Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3.\left|1-2x\right|-5\)
Ta có: \(\left|1-2x\right|\ge0\forall x.\)
\(\Rightarrow3.\left|1-2x\right|\ge0\forall x.\)
\(\Rightarrow3.\left|1-2x\right|-5\ge-5\) \(\forall x\)
\(\Rightarrow A\ge-5.\)
Dấu " = " xảy ra khi:
\(1-2x=0\)
\(\Rightarrow2x=1-0\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(MIN_A=-5\) khi \(x=\frac{1}{2}.\)
Chúc bạn học tốt!
dễ thế
\(A=3.\left|1-2x\right|-5\)
+Có:\(\left|1-2x\right|\ge0với\forall x\\ \Rightarrow3.\left|1-2x\right|-5\ge-5\\ \Leftrightarrow A\ge-5\)
+Dấu ''='' xảy ra khi \(\left|1-2x\right|=0\Leftrightarrow x=\frac{1}{2}\)
+Vậy \(A_{min}=-5\) khi \(x=\frac{1}{2}\)
Ta có:
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}.\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{29}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x-8y}{16}=0\Rightarrow12x-8y=0\Rightarrow12x=8y\\\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\\\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)
Vì \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}=\frac{2018a+2019c}{2018b+2019d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{2018a+2019c}{2018b+2019d}.\)
\(\Rightarrow\left(2018a+2019c\right).\left(b+d\right)=\left(a+c\right).\left(2018b+2019d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
b)
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.\)
+ Xét \(a+b+c\ne0.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}=1.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=1\Rightarrow a=1.b=b\\\frac{b}{c}=1\Rightarrow b=1.c=c\\\frac{c}{a}=1\Rightarrow c=1.a=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right).\)
+ Xét \(a+b+c=0.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right).\)
Chúc bạn học tốt!
Mấy bài này đơn giản mà, bn phải tự lm đi chứ, khi bài nào khó quá không biết làm thì hỏi chứ mik nghĩ bn ko phải ko biết lm mà là do bn lười. Chẳng lẽ nguyên đề ko biết lm bài nào