Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)
\(BC^2=25^2=625\)
=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)
b)Xét ΔABH vuông tại H(gt)
=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)
=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)
=>HB =16
Có BC=BH+HC
=>HC=BC-BH=25-16=9
a) Xét \(\Delta ABC \) có:
\(BC^2=25^2=625\)
\(AB^2+AC^2=20^2+15^2=625\)
\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)
\(\Rightarrow\)\(\Delta ABC\) vuông tại A.
b) Xét \(\Delta ABH\) có: \(AH \perp BC\)
\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)
\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)
\(\Rightarrow BH^2=20^2-12^2\)
\(BH^2=256\)
\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)
Ta có:
\(BH+HC=BC\) (H nằm giữa B và C)
\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)
\(\Rightarrow HC=25-16\)
\(HC=9\left(cm\right)\)
a) Ta có: AB2 + AC2 = 202 + 152 = 625
BC2 = 252 = 625
nên AB2 + AC2 = BC2
Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo
b) Áp dụng định lí Pitago trong tam giác vuông ACH được:
HC2 + HA2 = AC2
CH2 = 152 - 122
CH2 = 81
=> CH=9 (cm)
Áp dụng định lí Pitago trong tam giác vuông AHB được:
AH2 + BH2 = AB2
122 + BH2 = 202
=> BH2 = 202 - 122 = 256
=> BH=16 cm
Hình bạn tự kẻ nhé .
a) Ta có AB2+AC2 = 202+152= 625
Lại có BC2 = 252 = 625
=> Tam giác ABC vuông ( Py ta go )
b) Ta có AH là đường cao
=> Tam giác ABH và tam giác ACH vuông tại H
Áp dụng Py ta go vào tam giác vuông ACH ta được :
AC2=CH2+ AH2
=> 152 = CH2 + 122
=> CH2 = 152 - 122 = 81
=> CH = 9 ( cm)
=> BH = BC-CH = 25- 9 = 16 ( cm)
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Mình làm tóm tắt thôi nhé! Cậu tự giải sẽ nhớ lâu hơn!
Câu a) định lý Pytago đảo
b)Áp dụng định lí Pytago vào tam giác ABH
\(a)\)
\(\text{Ta có}:\)
\(\Delta ABC\)\(\text{vuông tại}\)\(A\)
\(\rightarrow BC^2=AB^2+AC^2\)
\(\rightarrow AC^2=BC^2-AB^2\)
\(\rightarrow AC^2=15^2-9^2\)
\(\rightarrow AC^2=144\)
\(\rightarrow AC=12\)
\(\rightarrow AB< AC< BC\)
\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
\(\text{Ta có:}\)
\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)
\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)
\(b)\)
\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)
\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)
\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)
\(\rightarrow CM=\frac{2}{3}CA\)
\(\rightarrow CM=8\)
\(c)\)
\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)
\(\rightarrow\widehat{CEA}=\widehat{CBA}\)
\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)
\(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)
\(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)
\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)
a) HC=BC-BH=25-9=16 (cm)
Xét \(\Delta\)BHA có:
AH2=AB2-BH2=152-92=144
\(AH=\sqrt{144}=12\left(cm\right)\)
Xét \(\Delta\)AHC có:
AC2=AH2+HC2=122+162=400
=> AC=20(cm)
b) AB2+AC2=152+202=625
BC2=252=625
=> BC2=AB2+AC2
=> \(\Delta\)ABC vuông tại A (đpcm)
a)ta co : AB^2 + AC^2 = 20^2 +15^2 = 400 + 225 = 625 (cm)
BC = 25^2 = 625 (cm)
=> điều phải chứng minh
b) ta co : HC^2+HA^2 =AC^2
CH^2 = 15^2-12^2= 81cm
=> CH = 9cm
Lai co :
AH^2+BH^ = AB^2
12^2+BH^2 =20^2
144 + BH^2 = 400
BH^2 =256
=> BH =16cm