K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

a) xét tam giác ABH và taam giác MBH có :

AB=BH(BE là tia phân giác)

ABH=HBM(BE là tia phân giác)

BH cạnh chung

=>tam giác ABH =tam giácHBE (c.g c)

b)=>tam giác ABM cân tại B mà BH là phân giác 

=>BE là trung trực

=>AHB=MHB=90 độ

c)vì AMC và góc MNC là cặp góc so le trong

=>AM//NC

d)Vì AM//NC(theo c)

mà BH vuông góc với AM

=>BH vông góc với NC (T/C từ vuông góc đến song song)

a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác 
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)

1 tháng 8 2020

A B C H M N

a, Xét hai tam giác vuông ABH và tam giác vuông MBH có :

               góc BAH = góc BMH = 90độ

               cạnh BH chung

               góc ABH = góc MBH ( vì BH là tia phân giác góc B )

Do đó : tam giác ABH = tam giác MBH ( cạnh huyền - góc nhọn )

b,Theo câu a : tam giác ABH = tam giác MBH 

\(\Rightarrow\)  BA = BM nên B thuộc đường trung trực của AM 

và HA = HM nên H thuộc đường trung trực của AM 

\(\Rightarrow\) BH thuộc đường trung trực của AM

Vậy BH vuông góc với AM .

c, Xét tam giác AHN và tam giác MHC có :

              góc AHN = góc MHC ( đối đỉnh )

              AH = MH ( theo câu b )

              góc  HAN = góc HMC = 90độ 

Do đó : tam giác AHN = tam giác MHC ( g.c.g )

\(\Rightarrow\) AN = MC ( cạnh tương ứng )

mà AB = MB 

Suy ra : AN + AB = MC + MB 

\(\Rightarrow\) BN = BC 

Vậy tam giác BCN cân tại B 

\(\Rightarrow\widehat{N}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\)  ( 1 )

Ta lại có : Tam giác ABM cân tại B ( vì AB = MB theo câu b )

\(\Rightarrow\widehat{BAM}=\widehat{BMA}=\frac{180^0-\widehat{B}}{2}\)  ( 2 )

Từ ( 1 ) và ( 2 ) suy ra :

góc N = góc C = góc BAM = góc BMA 

mà góc N = góc BAM ( ở vị trí đồng vị )

\(\Rightarrow\)AM // CN .

Học tốt

2 tháng 5 2022

a) .

Xét tam giác ABH và tam giác MBH có :

AB = BH(BE là tia phân giác)

góc ABH = góc HBM(BE là tia phân giác)

BH cạnh chung

đo đó : tam giác ABH = tam giác MBH (c.g c) (1)

b)

 Từ (1) suy ra:

tam giác ABM cân tại B mà BH là phân giác

=>BE là trung trực của đoạn thẳng AM

13 tháng 8 2018

Hình tự vẽ.

a) Xét \(Δ\)ABH vuông tại A và \(Δ\)MBH vuông tại M có:

BH chung

\(ABH=\widehat{MBH}\)(suy từ gt)

=> \(Δ\)ABH = \(Δ\)MBH (ch -gn)

b) Vì AB = BM nên ΔΔABM cân tại B

=> BAMˆBAM^ = BMAˆBMA^

Áp dụng tc tổng 3 góc trong 1 tg ta có:

BAMˆBAM^ + BMAˆBMA^ + NBCˆNBC^ = 180o

=> 2BAMˆBAM^ = 180o - NBCˆNBC^

=> BAMˆBAM^ = 180o−NBCˆ2180o−NBC^2 (3)

Do ΔΔABH = ΔΔMBH (câu a)

=> AH = MH (2 cạnh t/ư)