Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3-8+12-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2-6x^2\right)-6x+\left(8-8+12\right)=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Delta=\left(-6\right)^2-4.\left(-3\right).12=180>0,\sqrt{\Delta}=\sqrt{80}\)
\(x_1=\frac{6-\sqrt{80}}{-6};x_2=\frac{6+\sqrt{80}}{-6}\)
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
1) \(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{8}\right)^5=\left(-\frac{1}{8}\right)^7\)
\(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{8}\right)^5=-\frac{1}{2097152}\)
\(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{32768}\right)=-\frac{1}{2097152}\)
\(\left(\left|x\right|-\frac{1}{8}\right)=\left(-\frac{1}{2097152}\right)\left(-32768\right)\)
\(\left|x\right|-\frac{1}{8}=\frac{1}{64}\)
\(\left|x\right|=\frac{1}{64}+\frac{1}{8}\)
\(x=\frac{9}{64}\)
\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)
\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)
\(\rightarrow10x+80+15x+105=-6x\)
\(\Leftrightarrow31x+185=0\)
\(\Leftrightarrow x=-\frac{185}{31}\)
b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)
\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)
\(\rightarrow20x-160+15x-105=240+12-12x\)
\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
b, x-2+3x =10 =>2.(2x-1)=2.5 =>4x-2=10 =>4x=10+2 =>4x=12 =>x=12:4 => x=3 Vậy x=3. Mk làm đại đúng thì đúng sai thì sai nha nhg mk đoán thì đúng
a)3x−1+5.3x−1=162
⇔6.3x−1=162
⇔3x−1=27
⇔3x−1=33
⇔x−1=3
⇔x=4
\(\left|x+1\right|và\left|x+2\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)+\left(x+2\right)=3\\\left(x+1\right)+\left(x+2\right)=-3\end{cases}}\)
\(\orbr{\begin{cases}2x+3=3\\2x+3=-3\end{cases}}\)
\(\orbr{\begin{cases}2x=0\\2x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|=3\)
Xét \(x+1\ge0;x+2\ge0\Leftrightarrow x\ge-1;x\ge-2\Rightarrow x\ge-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\Rightarrow x=0\)(TM)
Xét \(x+1\le0;x+2\ge0\Leftrightarrow-2\le x\le-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow-x-1+x+2=3\Leftrightarrow1=3\) (loại)
Xét \(x+1\le0;x+2\le0\Leftrightarrow x\le-1;x\le-2\Leftrightarrow x\le-2\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=-x-2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=-x-1-x-2=-2x-3=3\Rightarrow x=-3\)(TM)
Vậy \(x=\left\{-3;0\right\}\)
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow x^2+2x+1=5\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)
\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)
Ta cần phân tích \(3x^2+6x-4\) thành nhân tử
Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)
\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)
\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)
\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)
\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)