K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

b2 = ac

=> \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd

=> \(\frac{b}{c}=\frac{c}{d}\)

d2 = ce

=> \(\frac{c}{d}=\frac{d}{e}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)

=> \(\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)

(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)

=> Đpcm

1 tháng 9 2016

Ta có :

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)

\(\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\frac{a}{e}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{e}=\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)

Vậy \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)

11 tháng 4 2017

Thay b^4=(ac)^2 và tương tự với d^4

Từ đó đặt thừa số chung và sẽ ra kết quả!

AH
Akai Haruma
Giáo viên
4 tháng 9 2018

Lời giải:

Từ \(b^2=ac; c^2=bd; d^2=ce\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}; \frac{c}{b}=\frac{d}{c}; \frac{d}{c}=\frac{e}{d}\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}\).

Đặt \( \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}=k\Rightarrow b=ak; c=bk; d=ck; e=dk\)

Khi đó:

\(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a^4+b^4+c^4+d^4}{a^4k^4+b^4k^4+c^4k^4+d^4k^4}=\frac{a^4+b^4+c^4+d^4}{k^4(a^4+b^4+c^4+d^4)}=\frac{1}{k^4}(1)\)

Và: \(bcde=ak.bk.ck.dk\)

\(\Rightarrow e=ak^4\Rightarrow \frac{a}{e}=\frac{1}{k^4}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)

3 tháng 6 2018

\(\frac{bf-ce}{a}=\frac{cd-àf}{b}=\frac{ae-bd}{c}=\frac{abf-ace}{a^2}=\frac{bcd-abf}{b^2}=\frac{ace-bcd}{c^2}\)

\(=\frac{abf-ace+bcd-abf+ace-bcd}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\frac{bf-ce}{a}=\frac{cd-af}{b}=\frac{ae-bd}{c}=0\)

\(\Rightarrow bf-ce=0\Rightarrow bf=ce\Rightarrow\frac{b}{e}=\frac{c}{f}\left(1\right)\)

    \(cd-af=0\Rightarrow cd=af\Rightarrow\frac{c}{f}=\frac{a}{d}\left(2\right)\)

    \(ae-bd=0\Rightarrow ae=bd\Rightarrow\frac{a}{d}=\frac{b}{e}\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)

14 tháng 10 2018

i don't know

17 tháng 10 2018

=>b^3=abc

=>c^3=bcd

=>a^3+b^3+c^3/b^3+c^3+d^3=a^3+abc+bcd/d^3+abc+bcd

=>

14 tháng 12 2021

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)

2 tháng 8 2015

giúp mình với nha các bạn

20 tháng 2 2018

\(b^2\)\(ac\)=> \(\frac{a}{b}\)\(\frac{b}{c}\)(1)

\(c^2\)\(bd\)=> \(\frac{b}{c}\)\(\frac{c}{d}\)(2)

từ (1) và (2) => \(\frac{a}{b}\)\(\frac{b}{c}\)\(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)\(\frac{c^3}{d^3}\)\(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)*   \(\frac{b}{c}\)*   \(\frac{c}{d}\)\(\frac{a}{d}\)         (*)

\(\frac{a^3}{b^3}\)=   \(\frac{b^3}{c^3}\)=  \(\frac{c^3}{d^3}\)=   \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)            (**)

Từ (*) và (**) => \(\frac{a}{d}\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (đpcm)

7 tháng 4 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)

Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)

29 tháng 11 2021

cho mình hỏi là ĐPCM là gì vậy 

12 tháng 11 2021

a, Vì a//b và b⊥c nên a⊥c

b, Ta có \(\widehat{D_2}=\widehat{D_4}=65^0\) (đối đỉnh)

Vì a//b nên \(\widehat{C_4}=\widehat{D_2}=65^0\) (so le trong)

\(\widehat{C_3}+\widehat{C_4}=180^0\) (kề bù)

Hay \(\widehat{C_3}=180^0-65^0=115^0\)