Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.4+1/4.7+1/7.10+1/10.13+1/13.16
=1/3.(3/1.4+3/4.7+3/7.10+3/10.13+3/13.16)
=1/3.(1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)
=1/3.(1/1-1/16)
=1/3.(16/16-1/16)=1/3.15/16=5/16
=1−14 +14 −110 +...+119 −122
=1−122
= \(\frac{21}{22}\)
k cho mình nha chắc chắn đúng 100 %
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+...+\frac{1}{19}-\frac{1}{22}\)
\(=1-\frac{1}{22}\)
\(=\frac{21}{22}\)
\(S=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{94\times97}+\frac{1}{97\times100}\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\frac{99}{100}\)
\(S=\frac{33}{100}\)
D = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.10}\)+...+ \(\dfrac{1}{91.94}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\)+...+ \(\dfrac{1}{91}\) - \(\dfrac{1}{94}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{94}\)
D = \(\dfrac{93}{94}\)
xet 1/4x7 +1/7x10+...+1/37x40
dat bieu thuc tren la A ta co:
A=1/4x7+1/7x10+...+1/37x40
3A=3/4X7+3/7X10+...+3/37X40
3A=1/4-1/71/7-1/10+...+1/37-1/40
3A=1/4-1/40
3A=10/40-1/40=9/40
A=9/40:3=9/120=3/40
=> (1/4x7+1/7x10+...+1/37x40)-x=4/5
3/40-x=4/5
x=3/40-4/5=-29/40
\(C=\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{2020+2023}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{2020.2023}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{3}.\dfrac{2019}{8092}\)
\(=\dfrac{673}{8092}\)