K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Q=\(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-\frac{1}{19}+...+\frac{1}{252}-\frac{1}{509}\)

=\(\frac{1}{2}-\left(\frac{1}{9}+\frac{1}{9}\right)-\left(\frac{1}{7}+\frac{1}{7}\right)-...-\left(\frac{1}{252}+\frac{1}{252}\right)-\frac{1}{509}\)

=\(\frac{1}{2}-0+0+0+...+0-\frac{1}{509}\)

=\(\frac{1}{2}-\frac{1}{509}\)

=\(\frac{507}{1018}\)

MẤY CÂU KHÁC THÌ TƯƠNG TỰ, CHÚC BẠN MAY MẮN!!!:))

27 tháng 6 2017

làm 2 câu còn lại đi câu đó làm rồi

3 tháng 7 2016

giup minh nhe

3 tháng 7 2016

Chị sẽ giúp em nốt mấy bài này, em còn nhận ra chị ko vậy?

\(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{99x101}\)

\(A=2x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x101}\right)\)

\(A=2x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=2x\left(1-\frac{1}{101}\right)=2x\frac{100}{101}=\frac{200}{101}\)

------------------------------

\(B=\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{2016}\right)\)

\(B=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{2017}{2016}\) (rút gọn từ trên tử xuống dưới mẫu nhé)

\(B=\frac{2017}{2}\)

-------------------------------

\(C=\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+...+\frac{3}{64x67}\)

\(C=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\)

\(C=1-\frac{1}{67}=\frac{67}{67}-\frac{1}{67}=\frac{66}{67}\)

--------------------------------

\(D=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x...x\left(1-\frac{1}{20}\right)\)

\(D=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{19}{20}\)(chỗ này cũng rút gọn từ trên tử xuống dưới mẫu)

\(D=\frac{1}{20}\)

20 tháng 3 2017

100km

20 tháng 3 2017

cần lm hộ ko 

mà rem và rem sai xùi

15 tháng 3 2016

)chứng tỏ

a)1/1x2+1/2x3+...+1/9x10 <1

b)1/1x2+1/2x3+...+1/99x100 <1

a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1

Lưu ý:"x" là phép nhân

Toán lớp 6

ái tích mình tíc lại nhà 

15 tháng 3 2016

CÂU a đề bài nó sao sao đó

mà gợi ý cho bạn ....bạn tính tổng đó ra bao nhiêu rồi đem so sánh cho 1

9 tháng 5 2016

\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)

\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3\times\left(1-\frac{1}{100}\right)\)

\(A=3\times\frac{99}{100}\)

\(A=\frac{297}{100}\)

9 tháng 5 2016

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)

11 tháng 8 2020

a) \(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{202.509}=\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)

\(=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(=\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)

b) \(\frac{1}{10.9}+\frac{1}{18.13}+...+\frac{1}{802.405}=\frac{2}{10.18}+\frac{2}{18.26}+...+\frac{2}{802.810}\)

\(=\frac{2}{8}\left(\frac{8}{10.18}+\frac{8}{18.26}+...+\frac{8}{802.810}\right)=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+...+\frac{1}{802}-\frac{1}{810}\right)\)

\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{40}{405}=\frac{10}{405}\)

11 tháng 8 2020

Bạn vào câu hỏi tương tự tham khảo !