K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

10 tháng 8 2020

Bài làm:

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

3 tháng 5 2018

\(S=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{94\times97}+\frac{1}{97\times100}\)

\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\times\frac{99}{100}\)

\(S=\frac{33}{100}\)

13 tháng 8 2023

\(C=\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{2020+2023}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{2020.2023}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{3}.\dfrac{2019}{8092}\)

\(=\dfrac{673}{8092}\)

27 tháng 1 2016

1/1.4+1/4.7+1/7.10+1/10.13+1/13.16

=1/3.(3/1.4+3/4.7+3/7.10+3/10.13+3/13.16)

=1/3.(1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)

=1/3.(1/1-1/16)

=1/3.(16/16-1/16)=1/3.15/16=5/16

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 1:

$M=3.4.5+4.5.6+...+13.14.15$

$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$

$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$

$=-2.3.4.5+13.14.15.16=43560$

$M=43560:4=10890$

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Bài 2:

a.

$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$

$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

$M=\frac{99}{100}:3=\frac{33}{100}$

29 tháng 8 2023

\(A=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{81.89}\)

\(\dfrac{8}{7}A=\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{81.89}\)

\(\dfrac{8}{7}A=1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{81}-\dfrac{1}{89}\)

\(\dfrac{8}{7}A=1-\dfrac{1}{89}=\dfrac{88}{89}\Rightarrow A=\dfrac{88}{89}:\dfrac{8}{7}=\dfrac{77}{89}\)

\(B=\dfrac{5^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{37.40}\)

\(B=\dfrac{25}{1.4}+\dfrac{9}{4.7}+\dfrac{9}{7.10}+...+\dfrac{9}{37.40}\)

\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\)

\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\)

\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{1}{4}-\dfrac{1}{40}=\dfrac{277}{120}\Rightarrow B=\dfrac{277}{120}:\dfrac{1}{3}=\dfrac{277}{40}\)

\(A=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{81.89}\)

\(=7\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{81.89}\right)\)

\(=7\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+\dfrac{1}{25}+...+\dfrac{1}{81}-\dfrac{1}{89}\right)\)

\(=7.\left(1-\dfrac{1}{89}\right)=7.\dfrac{88}{89}=\dfrac{616}{89}\)