K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)

\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)

\(=-\frac{1}{x-2}\)

b) \(A\) \(Max\)

\(\Rightarrow-\frac{1}{x-2}Max\)

\(\Rightarrow\frac{1}{x-2}Min\)

\(\Rightarrow\left(x-2\right)\) \(Max\)

\(\Rightarrow x\) \(Max\)

\(\Rightarrow x\in\varnothing\)

10 tháng 2 2020

Đề sai ạ ! Sửa lại nhé : 

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)

\(\Leftrightarrow A=\frac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right)\)

\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-x^2+3x-9}\)

\(\Leftrightarrow A=\frac{-\left(x+3\right)}{x}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow-\left(x+3\right)⋮x\)

\(\Leftrightarrow-x-3⋮x\)

\(\Leftrightarrow3⋮x\)

\(\Leftrightarrow x\inƯ\left(3\right)\)

Vậy để \(A\inℤ\Leftrightarrow x\inƯ\left(3\right)\)(\(x\neℤ\))

10 tháng 2 2020

Bạn sửa cho mik dòng cuối :

\(x\ne Z\)thành \(x\notin Z\)nhé !

23 tháng 12 2019

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-3\\x\ne3\end{cases}}\)

\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)\(=\left[\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right]:\left(\frac{-x^2}{3x^2-27}+\frac{1}{x+3}\right)\)

\(=\left[\frac{x\left(x-3\right)}{3x\left(x-3\right)}+\frac{9}{3x\left(x-3\right)}\right]:\left[\frac{-x^2}{3\left(x^2-9\right)}+\frac{1}{x+3}\right]\)

\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:[\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}]\)

\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)\(=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}=\frac{x+3}{-x}=\frac{-x-3}{x}=-1-\frac{3}{x}\)

b) \(A< -1\)\(\Leftrightarrow-1-\frac{3}{x}< -1\)\(\Leftrightarrow\frac{-3}{x}< 0\)

mà \(-3< 0\)\(\Rightarrow x>0\)và \(x\ne3\)

Vậy \(A< -1\Leftrightarrow\hept{\begin{cases}x>0\\x\ne3\end{cases}}\)

c) Vì \(-1\inℤ\)\(\Rightarrow\)Để A nguyên thì \(\frac{3}{x}\inℤ\)\(\Rightarrow3⋮x\)

\(\Rightarrow x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

So sánh với ĐKXĐ \(\Rightarrow x=\pm3\)loại

Vậy A nguyên \(\Leftrightarrow x=\pm1\)

13 tháng 2 2019

a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)

b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)

\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2}{x^2-3x+9}\)

c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)

Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)

\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)

ĐKXĐ : \(x\ne-3;x\ne0\)

\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)

\(P=\frac{2}{x^2-3x+9}\)

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)