Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : 5 dư 4 => a = 5q + 4
b chia 5 dư 3 => b = 5t + 3
ab = (5q + 4)(5t + 3) = 25qt + 15q + 20t +12 = 25qt + 15q +20t + 10 + 2 = 5 ( 5qt + 3q + 4t + 2) + 2 chia 5 dư 2
VẬy ab chia 5 dư 2
Theo bài ra,a=5k+4 và b=5q+3
=>a*b=(5k+4)*(5q+3)
=5k*5q+5k*3+4*5q+4*3
=25*k*q+15*k+20*q+12
Dễ rồi nhé
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Theo đề bài ta có:
a\(\equiv\)2(mod 5)
b\(\equiv\)3 ( mod 5)
=> ab\(\equiv\)2 x 3 ( mod 5 )
ab\(\equiv\)6 ( mod 5)
ab\(\equiv\)1 ( mod 5 )
Vậy ab chia 5 dư 1.
Học tốt nha bn
a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2
\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)
b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3
\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)
a) Số a có dạng: \(a=3k+2\)
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)
\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)
Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3
\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1
b) Số a có dạng là: \(a=5k+3\)
\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)
\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)
Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5
\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm