Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = x2 - 6x + 9 - 1 = (x - 3)2 - 12 = (x - 4)(x - 2)
b, = 4x2 - 4x - 3x + 3 = 4x(x - 1) - 3(x - 1) = (x - 1)(4x - 3)
c, = (x + 2)(5x - 4)
d, = 5x2 - 5x + 2x - 2 = 5x(x - 1) + 2(x - 1) = (x - 1)(5x + 2)
a) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
b) \(4x^2-7x+3\)
\(=4x^2-4x-3x+3\)
\(=4x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(4x-3\right)\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2\)
\(=9x^2-6x+1-\left(4x^2-12x+9\right)\)
\(=9x^2-6x+1-4x^2+12x-9\)
\(=5x^2+6x-8\)
\(=5x^2+10x-4x-8\)
\(=5x\left(x+2\right)-4\left(x+2\right)\)
\(=\left(x+2\right)\left(5x-4\right)\)
d) \(5x^2-3x-2\)
\(=5x^2-5x+2x-2\)
\(=5x\left(x-1\right)+2\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+2\right)\)
Ta có:
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
Cộng các BĐT vào ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(3\left(x^2+y^2+z^2\right)+3\ge12\)
\(3\left(x^2+y^2+z^2\right)\ge9\)
\(x^2+y^2+z^2\ge3\)
Vậy: MinP = 3
\(x^2+y^2+z^2+2x-4y+6z=-14\\ x^2+2x+1+y^2-4y+4+z^2+6z+9=0\\ \left(x+1\right)^2+\left(y-4\right)^2+\left(z+3\right)^2=0\\ \Rightarrow\left\{{}\begin{matrix}x+1=0\\y-4=0\\z+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\\z=-3\end{matrix}\right.\\ \Rightarrow x+y+z=-1+4-3=0\)
có \(x^2+y^2+z^2+2x-4y+6z=-14\)
=>\(x^2+z^2+y^2+2x-4y+6z+14=0\)
=>\(\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6y+9\right)=0\)
=>\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
=> x+1 =0
y-2 =0
z+3 =0
=> x = -1
y = 2
z = -3
=> x + y + z = -2