Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\)
\(=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\left(đpcm\right)\)
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{10}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{10}-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}\left(đpcm\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\)\(\frac{1}{10}\)
\(A=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{9}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{10}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}-1-\frac{1}{2}-...-\frac{1}{5}\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\left(đpcm\right)\)
~~~Hok tốt~~~
a) A=1-2-3+4+5-6-7+.....+1996+1997-1998-1999+2000
=(1-2-3+4)+(5-6-7+8)+...+(1997-1998-1999+2000)
=0
b) B=1-3+5-7+....+2001-2003+2005
=(1-3)+(5-7)+...+(2001-2003)+2005
=-2.501+2005
=-1002+2005
=1003
c) C=1-2-3+4+5-6-7+8+.....+1993-1994-1995+1996+1997
=(1-2-3+4)+(5-6-7+8)+...+(1993-1994-1995+1996)+1997
=1997
d) D=1000+998+996+......+10-999-997-995-...-11
=(1000-999)+(998-997)+(996-995)+....+(12-11)+10
=1.495+10
=595
M = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ... - 996 + 997 + 998
= (1 + 998) + (2 - 3 - 4 + 5) + (6 - 7 - 8 + 9) + ... + (994 - 995 - 996 + 997)
= 999 + 0 + 0 + ... + 0
= 999