K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

 

Bài toán 1

Ta có thể viết:

A(x) = (3 - 4x + x^2)^2004 * (3 + 4x + x^2)^2005 = (3^2004 - 2 * 3^2004 * 4x + 4^2004 * x^2 + 2 * 3^2004 * 4x^2 - 2 * 3 * 4^2004 * x^3 + 4^4009 * x^4) = 3^4008 - 2 * 3^2005 * 4x - 2 * 3^2004 * 4x^2 + 4^4009 * x^4

Tổng các hệ số của đa thức này là:

1 + (-2 * 2005) + (-2 * 2004) + 1 = -6014

Vậy đáp án là -6014.

Bài toán 2

Ta có thể viết:

a = 111...1 (2n chữ số 1) b = 111...1 (n + 1 chữ số 1) c = 666...6 (n chữ số 6)

Vậy:

a + b + c + 8 = 111...1 (2n) + 111...1 (n + 1) + 666...6 (n) + 8

Ta có thể chia cả hai vế cho 8 được:

(a + b + c + 8) / 8 = 111...1 (2n) / 8 + 111...1 (n + 1) / 8 + 666...6 (n) / 8 + 1

Ta có thể thấy rằng:

111...1 (2n) / 8 = (111...1 (n))^2 111...1 (n + 1) / 8 = (111...1 (n))^2 + 1 666...6 (n) / 8 = (111...1 (n))^2 - 1

Vậy:

(a + b + c + 8) / 8 = (111...1 (n))^2 + (111...1 (n))^2 + 1 + (111...1 (n))^2 - 1 + 1 = 3 * (111...1 (n))^2 + 1

Ta có thể thấy rằng:

(111...1 (n))^2 + 1 = (111...1 (n) + 1)(111...1 (n) - 1)

Vậy:

(a + b + c + 8) / 8 = 3 * (111...1 (n) + 1)(111...1 (n) - 1) + 1 = 3 * (222...2 (n + 1))

Từ đó, ta có:

a + b + c + 8 = 666...6 (2n + 2)

Vậy, a + b + c + 8 là số chính phương.

Bài toán 3

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 1, ta có:

ab + 4 = 4

4 là số chính phương.

Bước đệm

Giả sử rằng với mọi số tự nhiên a < n, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bước kết luận

Xét số tự nhiên a = n.

Theo giả thuyết, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Vậy, (n + 1)b + 4 = (n + 1)(ab + 4) + 3 là số chính phương, vì ab +