Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
bạn biết cách tính tổng của 1 dãy số ko?
nếu ko mik cho ct: (số cuối + số đầu) x số số hạng :2
ct tính số số hạng:( số cuối+ số đầu) : khoảng cách+1
nek, bạn chỉ hỏi cách giải thoy nhé chứ ko hỏi đáp án
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
a ) 13/20
B)
C..........................................................
minh dang tính
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)
\(\Leftrightarrow-\left(b-a\right)^2=ab\)
\(\Leftrightarrow-b^2+2ab-a^2=ab\)
\(\Leftrightarrow\)\(ab=a^2+b^2\)
Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)
Vậy không có số dương a,b thỏa mãn
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
a, 20 + 8.( x + 3 ) = 5^2 .4
20 + 8. ( x + 3 ) = 25 . 4
20 + 8. ( x + 3 ) = 100
8. ( x + 3 ) = 100 - 20
8 . ( x + 3 ) = 80
x + 3 = 80 : 8
x + 3 = 10
x = 10 - 3
x = 7
Vậy x = 7
b, /x+4/ - 12 = -6
/x+4/ = -6 + 12
/x+4/ = 6
x+4 ∈ { 6 ; -6 }
x ∈ { 2 ; -2 }
Vậy x ∈ { 2 ; -2 }
#Học tốt#
\(\frac{-2}{3}+\frac{1}{4}< \frac{a}{6}< \frac{3}{4}-\frac{1}{3}\)
\(\Leftrightarrow\frac{-8}{12}+\frac{3}{12}< \frac{2a}{12}< \frac{9}{12}-\frac{4}{12}\)
\(\Leftrightarrow\frac{-5}{12}< \frac{2a}{12}< \frac{5}{12}\)
\(\Leftrightarrow-5< 2a< 5\)
\(\Leftrightarrow-3< a< 3\)
\(\Leftrightarrow x\in\left\{0;\pm1;\pm2;\right\}\)
-2/3 +1/4<a/6<3/4- 1/3
=>-11/12<a.2/12<5/12
=>-11<a.2<5
=>a.2=-10;-8;-6;-4;...;2
=>a=-5;-4;-3;-2;...;1