K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 8 2023

\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 8 2023

\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

22 tháng 8 2018

\(\sqrt{x}>2\Leftrightarrow x>4\)

\(5>\sqrt{x}\Leftrightarrow x< 25\)

\(\sqrt{x}< \sqrt{10}\Leftrightarrow x< 10\)( x không âm )

\(\sqrt{3x}< 3\Leftrightarrow3x< 9\Leftrightarrow x< 3\)

\(14\ge7\sqrt{2x}\Leftrightarrow\sqrt{2x}\le2\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

Tham khảo nhé~

22 tháng 8 2018

\(1.\sqrt{x}>2\left(Đk:x\ge0\right)\\ \Leftrightarrow\sqrt{x}>\sqrt{4}\)

\(\Leftrightarrow x>4\)

a, \(16x^2-5=0\)

\(\Rightarrow16x^2=5\)

\(\Rightarrow x^2=\frac{5}{16}\)

\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)

b, \(2\sqrt{x-3}=4\)

\(\Rightarrow\sqrt{x-3}=4:2\)

\(\Rightarrow\sqrt{x-3}=2\)

\(\Rightarrow x-3=4\)

\(\Rightarrow x=4+3\)

\(\Rightarrow x=7\)

c, \(\sqrt{4x^2-4x+1}=3\)

\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Rightarrow2x-1=3\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

d, \(\sqrt{x+3}\ge5\)

\(\Rightarrow x+3\ge25\)

\(\Rightarrow x\ge22\)

e, \(\sqrt{3x-1}< 2\)

\(\Rightarrow3x-1< 4\)

\(\Rightarrow3x< 5\)

\(\Rightarrow x< \frac{5}{3}\)

g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Rightarrow\sqrt{x-3}=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

7 tháng 7 2019

a) \(16x^2-5=0\)

\(\Leftrightarrow16x^2=5\)

\(\Leftrightarrow x^2=\frac{5}{16}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)

b) \(2\sqrt{x-3}=4\)

\(\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\)

\(\Leftrightarrow x=7\)

c) \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

d) \(\sqrt{x+3}\ge5\)

\(\Leftrightarrow x+3\ge25\)

\(\Leftrightarrow x\ge22\)

e) \(\sqrt{3x-1}< 2\)

\(\Leftrightarrow3x-1< 4\)

\(\Leftrightarrow3x< 5\)

\(\Leftrightarrow x< \frac{5}{3}\)

g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Leftrightarrow\sqrt{x-3}=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

4 tháng 6 2021

Với a;b > 0 ta có:

\(\sqrt{a}+\sqrt{b}\le\dfrac{b}{\sqrt{a}}+\dfrac{a}{\sqrt{b}}\\ \Leftrightarrow\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\le\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\\ \Leftrightarrow a\sqrt{b}+b\sqrt{a}\le a\sqrt{a}+b\sqrt{b}\\ \Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}\ge0\\ \Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)\ge0\)

Bất đẳng thức cuối cùng luôn đúng vì: \(\left\{{}\begin{matrix}\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\\\sqrt{a}+\sqrt{b}>0\left(a;b>0\right)\end{matrix}\right.\)

Vậy bất đẳng thức được chứng minh với a;b >0

4 tháng 6 2021

cảm ơn cậu

 

\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)

Để A>B thì A-B>0

=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)

=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)

=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)

=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)

TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)

TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)