K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

29 tháng 12 2020

5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72

4)

20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2

=>chữ số tận cùng của 20122013 là 2

7 tháng 8 2019

Ta có : 2 ^ 4 = 16 có tận cùng là 6

Nên ( 2 ^ 4 ) ^ 13 = 2 ^ 52 có tận cùng là 6

=> 2 ^ 52 . 2 = 2 ^ 53 có tận cùng là 2

Ta có : 6 ^ n với n là số tụ nhiên khác 0 có tận cùng là 6

Nên : 6 ^ 70 có tận cùng là 6

Do đó  : 2 ^ 53 . 6 ^ 70 có tận cùng là 2

2 tháng 9 2023

Bài 1 :

\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)

\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)

\(=7^{2023-2020}-5.7^{2022-2020}\)

\(=7^3-5.7\)

\(=7\left(7^2-5\right)\)

\(=7\left(49-5\right)\)

\(=7.44=308\)

Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)

\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)

\(\Rightarrow n+6-n-2⋮n+2\)

\(\Rightarrow4⋮n+2\)

\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;2\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)

2 tháng 9 2023

Bài 3: 

3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)

Ta có: \(19^{8^{1945}}\) = \(19^{2k}\)  = \((\)192)k = \(\overline{...1}\)k = 1 

3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)

3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\) 

3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)