Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\dfrac{10^{2021}+1+9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+1+9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
mà \(10^{2021}+1< 10^{2022}+1\)
nên A>B
\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)
\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)
Chứng minh chia hết cho 31
C = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2( 1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ... + 296( 1 + 2 + 22 + 23 + 24 )
= 2.31 + 26.31 + ... + 296.31
= 31( 2 + 26 + ... + 296 ) chia hết cho 31 ( đpcm )
Tính tổng C
C = 2 + 22 + 23 + ... + 299 + 2100
=> 2C = 2( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101
=> C = 2C - C
= 22 + 23 + ... + 2100 + 2101 - ( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101 - 2 - 22 - 23 - ... - 299 - 2100
= 2101 - 2
Tìm x để 22x-1 - 2 = C
22x-1 - 2 = C
<=> 22x-1 - 2 = 2101 - 2
<=> 22x-1 = 2101
<=> 2x - 1 = 101
<=> 2x = 102
<=> x = 51
Bài 2 : 1 + ( -2 ) + 3 + ( -4 ) + ... + 2015
= [ 1 + ( -2 ) ] + [ 3 + ( -4 ) ] + ... + 2015
= -1 + -1 + ... + 2015
Có số các cặp số bằng ( -1 ) là :
2014 : 2 = 1007 ( cặp )
= -1007 + 2015
= 1008
\(∘backwin\)
\(a ) ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750\)
\( ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750 \)
\( 100 x + ( 1 + 100 ) ×100 : 2 = 5750\)
\(100 x + 5050 = 5750\)
\( 100 x = 5750 − 5050\)
\(100 x = 700\)
\(x = 700 : 100\)
\(x = 7\)
\(b,\) \(B=\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020}+2021\)
\( B < 1 -\)\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(B<1-\)\(\dfrac{1}{2021}\)
\(B<\)\(\dfrac{2020}{2021}\)
\(\dfrac{2020}{2021}< 1\)
\(B<1\)
a) (x+1) +(x+2 ) + ...+(x+100)=5750
= 100x + (1+2+3+...+100) = 5750
=100x + 5050 = 5750
--> 100x = 5750-5050=700
--> x=7