K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

16 tháng 9 2021

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm 

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???

 

Xét ΔMNP vuông tại M có MH là đường caop

nên \(NM^2=NH\cdot NP\)

=>\(NP\cdot7=10^2=100\)

=>\(NP=\dfrac{100}{7}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2=NP^2-MN^2=\left(\dfrac{100}{7}\right)^2-10^2=\dfrac{5100}{49}\)

=>\(MP=\dfrac{10\sqrt{51}}{7}\left(cm\right)\)

\(\widehat{HMP}+\widehat{HMN}=90^0\)

\(\widehat{HMN}+\widehat{N}=90^0\)

=>\(\widehat{HMP}=\widehat{N}\)

Xét ΔMNP vuông tại M có \(sinN=\dfrac{MP}{NP}\)

=>\(sinHMP=\dfrac{10\sqrt{51}}{7}:\dfrac{100}{7}=\dfrac{\sqrt{51}}{10}\)

30 tháng 7 2021

a) Áp dụng hệ thức giữa các cạnh góc vuông và hình chiếu vào \(\Delta ABC\) ta có:

\(AB^2=BH.BC\) \(\Rightarrow BH=\dfrac{AB^2}{HB+HC}=\dfrac{6^2}{HB+6,4}\)

\(\Leftrightarrow HB^2+6,4HB-36=0\)

\(\Leftrightarrow\left(HB-3.6\right)\left(HB+10\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}HB=3,6\\HB=-10\end{matrix}\right.\) \(\Leftrightarrow HB=3,6\left(cm\right)\)

b) Ta có \(AC=BH+HC=6,4+3,6=10\left(cm\right)\)
Áp dụng định lý Pytago vào \(\Delta ABC\) ta có:

\(BC^2=AB^2+AC^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

 

30 tháng 7 2021

undefined

27 tháng 11 2023

a: NP=NH+HP

=1+4

=5(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=HN\cdot HP\)

=>\(MH^2=1\cdot4=4\)

=>MH=2(cm)

ΔMHP vuông tại H

=>\(HM^2+HP^2=MP^2\)

=>\(MP^2=2^2+4^2=20\)

=>\(MP=2\sqrt{5}\left(cm\right)\)

b:

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)

=>\(MN^2=25-20=5\)

=>\(MN=\sqrt{5}\left(cm\right)\)

Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)

=>\(cosN=\dfrac{\sqrt{5}}{5}\)

Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)

=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

c: Xét ΔMNA vuông tại M có MK là đường cao

nên \(NK\cdot NA=NM^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=NM^2\left(2\right)\)

Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)

=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

Xét ΔNKP và ΔNHA có

\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

\(\widehat{KNP}\) chung

Do đó: ΔNKP đồng dạng với ΔNHA

3 tháng 9 2023

a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.

b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.

c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.