Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b:
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồg dạg vơi ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
Xét ΔAMF và ΔEMK có
MA/ME=MF/MK
góc AMF=góc EMK
=>ΔAMF đồng dạng với ΔEMK
=>góc FAM=góc KEM
=>AEFK nội tiếp
mà AEHK nội tiếp
nên A,E,F,K,H cùng thuộc 1 đường tròn
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK=AD*2R
a) Xét tứ giác BCEF có
\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M