Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do I là trung điểm của DC
suy ra: IC=1/2DC
Mà AB=1/2DC nên AB=CI(*)
Ta có: AB//CD
MÀ I nằm trên cạnh DC
suy ra AB//IC(**)
Từ (*);(**) suy ra tứ giác ABCI là hình bình hành
b, Chứng minh tương tự ta cũng có tứ giác ABID là hình bình hành.
c, Chứng minh tam giác bằng nhau suy ra IA=IC còn cách còn lại bạn tự làm nha dễ đấy
bạn làm hộ mik lốt câu c đi.Mik chứng minh đc IA=IC rồi nhưng không biết làm gì nữa
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !
a) Tam giác ABC có :
Lời giải:
Sử dụng điều kiện $abcd=1$ có:
\(M=\frac{a}{abc+ab+a+1}+\frac{ab}{abcd+abc+ab+a}+\frac{abc}{ab.cda+ab.cd+abc+ab}+\frac{abcd}{abc.dab+abc.da+abc.d+abc}\)
\(=\frac{a}{abc+ab+a+1}+\frac{ab}{1+abc+ab+a}+\frac{abc}{a+1+abc+ab}+\frac{1}{ab+a+1+abc}\)
\(=\frac{a+ab+abc+1}{abc+ab+a+1}=1\)
Vậy $M=1$
M N là điểm đối xứng của O qua I và K mình thiếu sorry nha
a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
- Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc Bnhuquynhdat, 17 Tháng mười hai 2013#2 nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg
a: góc C=180-100=80 độ
góc A=180-60=120 độ
b; MN=(AB+CD)/2
=>AB+CD=2MN
=>CD=2*15-10=20cm
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
P là trung điểm DC(gt)
Q là trung điểm AD(gt)
=> PQ là đường trung bình
=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\) Tứ giác MNPQ là hình bình hành
b) Xét tam giác ABD có:
M là trung điểm AB(gt)
Q là trung điểm AD(gt)
=> MQ là đường trung bình \(\Rightarrow MQ=\dfrac{1}{2}BD\)
CMTT: NP là đường trung bình của tam giác BDC
\(\Rightarrow NP=\dfrac{1}{2}BD\)
Ta có: \(P_{MNPQ}=MN+NP+PQ+QM=\dfrac{1}{2}AC+\dfrac{1}{2}BD+\dfrac{1}{2}AC+\dfrac{1}{2}BD=AC+BD\)
:I