Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEDC có
AE//DC
AE=DC
Do đó: AEDC là hình bình hành
a) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là đường cao (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) AD \(\perp\) BC.
Xét tứ giác AEBD có:
\(+\) I là trung điểm của AB (gt).
\(+\) I là trung điểm của ED (E là điểm đối xứng với D qua I).
\(\Rightarrow\) Tứ giác AEBD là hình bình hành (dhnb).
Mà \(\widehat{ADB}\) = 90o (AD \(\perp\) BC).
\(\Rightarrow\) Tứ giác AEBD là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AD là phân giác (gt).
\(\Rightarrow\) AD là trung tuyến (Tính chất các đường trong tam giác cân).
\(\Rightarrow\) D là trung điểm của BC. \(\Rightarrow\) BD = DC.
Mà BD = EA (Tứ giác AEBD là hình chữ nhật).
\(\Rightarrow\) EA = DC (= BD).
Tứ giác AEBD là hình chữ nhật (cmt).
\(\Rightarrow\) EA // DC (Tính chất hình chữ nhật).
Xét tứ giác AEDC có:
\(+\) EA = DC (cmt).
\(+\) EA // DC (EA // BD).
\(\Rightarrow\) Tứ giác AEDC là hình bình hành (dhnb).
* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G
Suy ra: G là trọng tâm của ∆ ABC .
⇒ GB = 2GM (tính chất đường trung tuyến)
GC = 2GN (tính chất đường trung tuyến)
Điểm D đối xứng với điểm G qua điểm M
⇒ MG = MD hay GD = 2GM
Suy ra: GB = GD (l)
Điểm E đối xứng với điểm G qua điểm N
⇒ NG = NE hay GE = 2GN
Suy ra: GC = GE (2)
Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét ∆ BCM và ∆ CBN, có: BC cạnh chung
∠ (BCM) = ∠ (CBN) (tính chất tam giác cân)
CM = BN (vì AB = AC)
Suy ra: ∆ BCM = ∆ CBN (c.g.c)
⇒ ∠ (MBC) = ∠ (NCB) ⇒ ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE
Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.
MK dang thac mac tai sao mk lai co the lam ging het bn 100% ?
a: Ta có: D đối xứng với A qua BC
nên BC là đường trung trực của AD
=>BC vuông góc với AD tại trung điểm của AD
=>F là trung điểm của AD
Ta có: ΔABC cân tại A
mà AF là đường cao
nên F là trung điểm của BC
Xét tứ giác ABDC có
F là trung điểm của AD
F là trung điểm của BC
Do đó:ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
b: Xét ΔEBC có
BA là đường trung tuyến
BA=EC/2
Do đó:ΔEBC vuông tại B
=>EB\(\perp\)BC
c: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó; ADBE là hình bình hành
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Các bạn có thể giải thích chi tiết cho mik vs nha
vì K là điểm đối xứng với G qua D nên:
GD=GK(1)
vì AD là phân giác ABC nên:
BD=CD(2)
từ (1)và (2) suy ra:
BGCK là hình chữ nhật.