Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13
= 1000000+30000+300+1 = 1030301
b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13
= 27000000 - 270000 + 900 -1 = 26730899
c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1
= 1000000 - 30000 + 300 -1 = 970299
\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)
\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)
a) Ta có: \(A=\dfrac{37^3+12^3}{49}-37\cdot12\)
\(=\dfrac{\left(37+12\right)\left(37^2-37\cdot12+12^2\right)}{49}-37\cdot12\)
\(=37^2-2\cdot37\cdot12+12^2\)
\(=\left(37-12\right)^2\)
\(=25^2=625\)
a. A = (a + b)3 - (a - b)3
A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)
A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)
A = 2b(3a2 + b2)
A = 6a2b + 2b3
\(a,892^2+216.892+108^2=892^2+2.108.892+108^2=\left(892+108\right)^2=1000^2=1000000\)
b, \(9x^2+42x+49=9.1^2+42.1+49=9+42+49=100\)
c,\(\left(x^2-3x\right)+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)=\left(6+1\right)\left(6-3\right)=7. 3=21\)
\(a.75^2-50.75+25^2\\ =75^2-2.25.75+25^2\\ =\left(75-25\right)^2=50^2=2500\)
\(b.103.97\\ =\left(100+3\right)\left(100-3\right)\\ =100^2-3^2\\ =9991\)
\(a,75^2-50.75+25^2\\ =75^2-2.75.25+25^2\\ =\left(75+25\right)^2=100^2=10000\\ b,103.97\\ =\left(100+3\right).\left(100-3\right)\\ =100^2-3^2=10000-9=9991\)
a. Ta có: \(17^2-14.17+49=17^2-2.7.17+7^2=\left(17-7\right)^2=10^2=100\)
b. \(2021^2-2020^2=\left(2021-2020\right)\left(2021+2020\right)=4041\)
a) \(52^2\)
\(=\left(50+2\right)^2\)
\(=50^2+2\cdot2\cdot50+2^2\)
\(=2500+200+4\)
\(=2704\)
b) \(98^2\)
\(=\left(100-2\right)^2\)
\(=100^2-2\cdot100\cdot2+2^2\)
\(=10000-400+4\)
\(=9604\)
`a, 52^2 = (50+2)^2 = 2500 + 200 + 4 = 2704`
`b, 98^2 = (100-2)^2 = 100^2 - 2 . 100 . 2 + 4 = 10000 - 400 + 4`
`= 9604`
a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68
= 2,83.(5,86-4,86)+1,17.(5,86-4,86)=2,83.1+1,17.1=4
b) 1112-1372-482+96.137
= 1112-(1372-2.48.137+482)=1112-(137-48)2=1112-892=(111-89)(111+89)=22.200=4400
a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68
= (2,83.5,68-2,83.4,68)+(1,17.5,68-1,17.4,68)
=2,83.(5,68-4,68)+1,17(5,68-4,68)=2,83+1,17=4