Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
a, Ta có: góc ABC=góc ACB (t/g ABC cân tại A)
=> góc ABC/2 = góc ACB/2
=>góc B1 = góc B2 = góc C1 = góc C2
Xét t/g ADB và t/g AEC có:
góc B1 = góc C1 (cmt)
AB=AC (t/g ABC cân tại A)
góc A chung
=>t/g ADB = t/g AEC (g.c.g)
b, Vì t/g ADB = t/g AEC (câu a) => BD=CE (*), AE=AD
=> t/g AED cân tại A
=> góc AED = góc ADE = \(\frac{180^o-\widehat{A}}{2}\) (1)
Mà góc ABC=góc ACB = \(\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) => góc AED = góc ABC
Mà góc AED và góc ABC là cặp góc đồng vị
=> ED // BC (**)
Từ (*) và (**) => BEDC là hình thang cân
c, Vì BEDC là hình thang cân => BE=DC (3)
Từ (**) => góc EDB = góc B2 (so le trong)
Mà góc B1 = góc B2 (gt)
=>góc EDB = góc B1
=>t/g BED cân tại E
=>BE=ED (4)
Từ (3),(4) => BE=ED=DC
P/s: hình chỉ mang tính chất minh họa :v
Cái hình mình vẽ tương đôi thôi, bạn cứ coi như là nó đều đi ha :))))
a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)
\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
mà AC=AB(ΔBAC cân tại A)
nên AD=DC=AE=EB
Xét ΔADE có AE=AD(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔADB và ΔAEC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
AD=AE(cmt)
Do đó: ΔADB=ΔAEC(c-g-c)
c) Ta có: ΔAED cân tại A(gt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BCDE có ED//BC(cmt)
nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)
nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)
Xét ΔABC có
CE là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)
nên ED//BC(Định lí Ta lét đảo)
Xét tứ giác BEDC có ED//BC(cmt)
nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)
mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)
nên \(\widehat{EDB}=\widehat{EBD}\)
Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)
nên ΔEBD cân tại E(Định nghĩa tam giác cân)
hay ED=EB(đpcm)