Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: h(x)=3x^2+x
c: h(x)=0
=>x=0; x=-1/3
a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)
b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)
\(=x^4+x^2+10\)
c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)
Vậy phương trình ko có nghiệm ( đpcm )
Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé
a, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
hay \(h\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9\)
\(h\left(x\right)=3x^2+x\)
b, Đặt \(3x^2+x=0\Leftrightarrow x\left(3x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức h(x) là x = -1/3 ; x = 0
c, Ta có : \(k\left(x\right)=f\left(x\right)-g\left(x\right)\)
hay \(k\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9-x^5-7x^4-2x^3-2x^2+3x+9\)
\(k\left(x\right)=-2x^5-14x^4-4x^3-x^2+7x+18\)
f(x)=-x5-7x4 -2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
Tính
a)h(x)=f(x)+g(x)
Ta có: h(x) = f(x) + g(x)
= (-x5-7x4 -2x3+x2+4x+9) + (x5+7x4+2x3+2x2-3x-9)
= (x5-x5) + (7x4-7x4) + (2x3-2x3) + (x2+2x2)+ (4x-3x) + (9-9)
=3x2+x
b)Tìm nghiệm của h(x)
h(x) = 0 <=> 3x2+x= 0
<=> x(3x+1) =0 <=> x= 0 hoặc x =-1/3
Vậy nghiệm của h(x) là x thuộc {0;-1/3}
c)k(x)=f(x)-g(x)
=(-x5-7x4 -2x3+x2+4x+9) - (x5+7x4+2x3+2x2-3x-9)
= (-x5-x5) + (-7x4-7x4) + (-2x3-2x3) + (x2-2x2) (4x+3x) + (9+9)
=-2x5-14x4 -4x3-x2+7x+19
a) Ta có:+) f(x) = 2x2(x - 1) - 5(x - 2) - 2x(x - 2)
f(x) = 2x3 - 2x2 - 5x + 10 - 2x2 + 2x
f(x) = 2x3 - 4x2 - 3x + 10
f(x) = 2x3 - 2x2 - 5x + 10
+) g(x) = x2(2x - 3) - x(x + 1) - (3x - 2)
g(x) = 2x3 - 3x2 - x2 - x - 3x + 2
g(x) = 2x3 - 4x2 - 4x + 2
b) f(2) = 2.23 - 4. 22 - 3.2 + 10 = 16 - 16 - 6 + 10 = 4
g(-2) = 2.(-2)3 - 4.(-2)2 - 4.(-2) + 2 = 2 . 8 - 4.4 + 8 + 2 = 10
c) H(x) = f(x) - g(x) = (2x3 - 4x2 - 3x + 10) - (2x3 - 4x2 - 4x + 2)
H(x) = 2x3 - 4x2 - 3x + 10 - 2x3 + 4x2 + 4x - 2
H(x) = (2x3 - 2x3) - (4x2 - 4x2) - (3x - 4x) + (10 - 2)
H(x) = x + 8
=> f(x) - g(x) = A(x) = -x - 8
d) Ta có: H(x) = 0
=> x + 8 = 0
=> x = -8
Thanks