Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 2 vòi nước cùng chảy vào 1 bể nước cạn sau 1 giờ 3 phút (sai mk sửa thành 1 giờ 30 phút )thì đầy bể. Nếu mở riêng từng vòi, thì vòi thứ 1 chảy đầy bể chậm hơn vòi thứ 2 là 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu thì đầy bể
Trong 1 giờ hai vòi cùng chảy vào bể được số phần bể là :
1 : 1,5 = 2/3 (bể)
Trong 1 giờ vòng thứ nhất chậm ơn vòi thứ hai là :
1 : 2 = 1/2 (bể)
Trong một giờ vòi thứ nhất chảy được số phần bể là :
(2/3 - 1/2) : 2= 1/12 (bể)
Trong một giờ vòi thứ hai chảy được số phần bể là :
2/3 - 1/12 = 7/12 (bể)
Nếu mở riêng vòi thứ nhất thì sâu số thời gian đầy bể là :
1 : 1/12 = 12 (giờ)
Nếu mở riêng vòi thứ hai thì sâu số thời gian đầy bể là :
1 : 7/12 = 12/7 (giờ)
Đáp số : 12 giờ ; 12/7 giờ
Gọi thời gian chảy riêng của vòi A là x
=>Thời gian chảy riêng của vòi B là x+3
Theo đề, ta có: \(\dfrac{1}{x}+\dfrac{1}{x+3}=1:3,6=\dfrac{5}{18}\)
=>\(\dfrac{x+3+x}{x\left(x+3\right)}=\dfrac{5}{18}\)
=>5(x^2+3x)=18(2x+3)
=>5x^2+15x-36x-54=0
=>5x^2-21x-54=0
=>x=6
=>Thời gian chảy riêng của vòi B là 9h
Gọi thời gian vòi một chảy một mình đến đầy bể là x (giờ) (x>0)
thời gian vòi hai chảy một mình đến đầy bể là y (giờ) (y>0)
Ta có hpt :
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\x=y-10\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=30\end{cases}\left(TM\right)}}\)
Vậy nếu chảy riêng thì vòi một chảy trong 20 giờ thì đầy bể, vòi hai chảy trong 30 giờ thì đầy bể
Gọi thời gian vòi 1 chảy một mình đầy bể là x (h), thời gian vòi 2 chảy một mình đầy bể là y (h) (x; y > 1,5)
Mỗi giờ vòi I chảy được 1 x (bể), vòi II chảy được 1 y bể nên cả hai vòi chảy được 1 x + 1 y bể
Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình: 1 x + 1 y = 2 3 (1)
Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1 3 h thì được 1 5 bể nên ta có phương trình 0 , 25 x + 1 3 y = 1 5 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 ⇔ 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5
(thỏa mãn)
Vậy thời gian vòi 2 chảy một mình đầy bể là 2,5h
Đáp án: A
Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.
Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).
Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:
6 * 2x = 1 (bể đầy)
Từ đó, ta có:
12x = 1
x = 1/12
Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.
Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.
Gọi thời gian vòi 1 và vòi 2 chảy một mình mình đầy bể lần lượt là x,y
Theo đề, ta có hệ phương trình:
1/x+1/y=1/1,5 và 1/4*1/x+1/3*1/y=1/5
=>1/x=4/15 và 1/y=2/5
=>x=15/4 và y=5/2
Đổi 2 giờ 55 phút = giờ
Gọi x (giờ) là thời gian chảy riêng đầy bể của vòi thứ nhất.
Điều kiện: x > 35/12
Khi đó thời gian chảy riêng đầy bể của vòi thứ hai là x + 2 (giờ)
trong 1 giờ, vòi thứ nhất chảy được 1/x (bể)
trong 1 giờ, vòi thứ hai chảy được 1/(x + 2 ) (bể)
Giá trị x = - 7/6 không thỏa mãn điều kiện bài toán.
Vậy vòi thứ nhất chảy riêng đầy bể trong 5 giờ
vòi thứ hai chảy riêng đầy bể trong 5 + 2 = 7 giờ