K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2022

Ta có AB=AC⇒ΔABC cân tại A

Vì trong tam giác cân đường cao đồng thời là đường phân giác ⇒AD cũng là đường phân giác

Ta có: ΔABC cân tại A

mà AD là đường cao

nên AD là đường phân giác

12 tháng 4 2022

lm cho mk câu d là đc rồi nha

 

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

29 tháng 11 2021

a) D là trung điểm của BC (gt).

=> DB = DC.

Xét tg ADB và tg ADC có: 

DB = DC (cmt).

AB = AC (gt).

AD chung.

=> tg ADB = tg ADC (c - c - c).

b) Xét tg ABC cân tại A (AB = AC):

AD là trung tuyến (D là trung điểm của BC).

=> AD là tia phân giác góc BAC.      (tính chất các đường trong tg cân).

c) Xét tg ABC cân tại A (AB = AC):

AD là trung tuyến (D là trung điểm của BC).

=> AD là đường cao. (tính chất các đường trong tg cân).

=> AD vuông góc với BC.

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

17 tháng 12 2016

Bài 1:

A B C D

a, Xét tam giác ADB và tam giác ADC

Ta có: góc BAD = góc CAD

           AD cạnh chung

          góc ADB = góc ADC ( = 180' - góc BAD - góc ABD = 180' - góc CAD - góc ACD)

Do đó:  tam giác ADB = tam giác ADC ( g - c - g)

b, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)

Suy ra: AB = AC ( hai cạnh tương ứng)

c, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)

Suy ra: BD = CD( hai cạnh tương ứng)      (1)

và  góc ADB = góc ADC ( hai góc tương ứng)

mà góc ADB + góc ADC = 180' ( kề bù)

Suy ra: góc ADB = 90' hay AD vuông góc với BC (2)

Từ (1) và (2), suy ra: AD là đường trung trực của BD

Nếu bạn đã học tam giác cân rồi thì cách giải sau đây phù hợp hơn, nếu chưa học thì bạn nên giải cách trên.

a,Xét tam giác ADB và tam giác ADC

Ta có: góc BAD = góc CAD

           AB = AC ( góc ABD = góc ACD, tam giác ABC cân tại A)

          góc ABD = góc ACD ( giả thiết)

Do đó:  tam giác ADB = tam giác ADC ( g - c - g)

b, Ta có: góc ABD = góc ACD ( gt)

Suy ra: tam giác ABC cân tại A.

Suy ra: AB = AC

c, Tam giác ABC cân tại A nên AD vừa là đường phân giác cũng vừa là đường trung tuyến.

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

a: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: ΔABD cân tại A

=>góc ADH=góc ABH

mà góc ABH=góc HAC

nên góc ADH=góc HAC

ΔABD cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAD

=>góc BAH=góc DAH

mà góc BAH=góc ACB

nên góc DAH=góc ACB

c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

góc HDA=góc EDC

=>ΔDHA đồng dạng với ΔDEC

=>góc ECD=góc HAD

=>góc ECB=góc ACB

=>CB là phân giác của góc ACE

e: ΔBAD cân tại A

=>góc ADB<90 độ

=>góc ADC>90 độ

Xét ΔADC có góc ADC>90 độ

nên AC là cạnh lớn nhất

=>AC>CD

a) tam giác ABC có:

AB=AC => tam giác ABC cân tại A

Lại có: AD là đường phân giác của tam giác TG ABC

=> AD cũng là đường cao của tam giác ABC

b) xét tam giác EAD và tam giác ADF ta có:

AD chung

góc EAD = FDA ( AD là đpg)

AE =AF ( AB -BE=AC-FC)

=> TG EAD =TG ADF(cdc)

=> góc EDA=góc ADC(2 góc tương ứng)

mà AD nằm giữa 2 góc

=>...

3 tháng 9 2021

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

Góc EAD=góc FAD

AD chung

Do đó: ΔAED = ΔAFD

Suy ra: Góc EAD = góc FDA

hay DA là tia phân giác của góc EDF

25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK