K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

Do đó: ADME là hình chữ nhật

b:ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔAMQ có

AE vừa là đường cao, vừa là trung tuyến

=>ΔAMQ cân tại A

=>AE là phân giác của góc MAQ(1)

Xét ΔAMP có

AD vừa là đường cao, vừa là trung tuyến

=>ΔAMP cân tại A

=>AD là phân giác của góc MAP(2)

Từ (1), (2) suy ra góc PAQ=góc MAP+góc MAQ

=2(góc BAM+góc CAM)

=2*góc BAC

=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ=AM

nên A là trung điểm của PQ

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔBMP có

BD vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBMP cân tại B

=>BA là phân giác của góc MBP

Xét ΔAMP có

AD là đường cao, là đường trung tuyến

Do đó: ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMQ có

AC vừa là đường cao, vừa là đường trung tuyến

Do đó; ΔAMQ cân tại A

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ

=>P,A,Q thẳng hàng

Xét ΔAMB và ΔAPB có

AM=AP

AB chung

BM=BP

Do đó: ΔAMB=ΔAPB

=>góc AMB=góc APB

Xét ΔAMC và ΔAQC có

AM=AQ

góc MAC=góc QAC

AC chung

Do đó: ΔAMC=ΔAQC

=>góc AMC=góc AQC

=>góc AQC+góc AMB=180 độ

mà góc AMB=góc APB

nên góc AQC+góc APB=180 độ

=>BP//QC

=>BPQC là hình thang

d: AM=AP

AM=AQ

Do đó: AP=AQ

mà P,A,Q thẳng hàng

nên A là trung điểm của PQ

10 tháng 12 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

28 tháng 7 2019

Hinh nhu de sai thi phai ban ah.Ban thu coi lai coi xem co dieu kien nao cua tam giac ABC khong ?

29 tháng 12 2020

giúp mh vs ạ mai mh thi r

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC