Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Y=\frac{\sqrt{3-2x}}{\sqrt{1-x}}+\frac{\sqrt{2x+1}}{x}\)
\(\Rightarrow\left\{{}\begin{matrix}3-2x\ge0\\1-x>0\\2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3}{2}\\x< 1\\x\ge\frac{-1}{2}\\x\ne0\end{matrix}\right.\)
TXĐ: \([-\frac{1}{2};\frac{3}{2}]\backslash\left\{0\right\}\)
b) \(Y=\frac{\sqrt{3x+5}}{x-2}+\frac{\sqrt{2x+3}}{\sqrt{4-x}}\)
\(\left\{{}\begin{matrix}3x+5\ge0\\x-2\ne0\\2x+3\ge0\\4-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{3}\\x\ne2\\x\ge-\frac{3}{2}\\x< 4\end{matrix}\right.\)
TXĐ: \([-\frac{5}{3};4)\backslash\left\{2\right\}\)
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)