K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

a) \(D=(0;+\infty)\backslash\left\{1\right\}\)

b) \(D=[2;+\infty)\)

30 tháng 3 2017

a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3

Tập xác định của y = là:

D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +)\{-1}

Có thể viết cách khác: D = [-3, -1] ∪ (-1, +)

b) Tập xác định

D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}

= [-, 2323 ]∩(-, 1212) = (-, 1212)

c) Tập xác định là:

D = [1, +) ∪ (-,1) = R

NV
12 tháng 7 2021

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

NV
12 tháng 7 2021

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

a. ĐKXĐ: $x^3-x\neq 0$

$\Leftrightarrow x(x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq 0;\pm 1$

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)

b.

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)

TXĐ:

\([0;+\infty)\setminus \left\{1\right\}\)

c.

ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)

TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)