K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath

Giả sử d = (a;b). Khi đó ta có:

\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

hok tốt

23 tháng 12 2021

a) Vì  nên (n + 1) ∈ Ư(6) = {1; 2; 3; 6}

Ta có bảng sau:

n + 1

2

3

6

n

0

1

2

5

Vì n là số tự nhiên nên n ∈ {0; 1; 2; 5}

Vậy n ∈ {0; 1; 2; 5}.
b) Gọi x = 23.3a  và y = 2b.35

Ta có tích của hai số là tích của ƯCLN và BCNN của hai số đó.

Ta có: x. y = ƯCLN(x, y). BCNN(x, y)

Vì ước chung lớn nhất của hai số là   và bội chung nhỏ nhất của hai số là 23.36.

Biết hai số 2^3.3^a và 2^b.3^5 có ước chung lớn nhất là 2^2.3^5 và

Vì thế 3 + b = 5. Suy ra b = 5 – 3 = 2

         a + 5 = 11. Suy ra a = 11 – 5 = 6

Vậy a = 6; b = 2.

 

 
11 tháng 11 2022

Gọi x = 23.3a  và y = 2b.35

Ta có: x. y = ƯCLN(x, y). BCNN(x, y)

Vì ước chung lớn nhất của hai số là 22.35 và bội chung nhỏ nhất của hai số là 23.36

Ta được x.y= 22.35.23.36=22.23.35.36=25.311

Mà xy =23+b.3a+5

Ta được 5=3+b và 11=a+5

Vậy b=2 và a=6

 

a: \(n+1\in\left\{1;2;3;6\right\}\)

hay \(n\in\left\{0;1;2;5\right\}\)

1 tháng 1 2022

cảm ơn bn nhiều

a: \(\Leftrightarrow n+1\in\left\{1;2;3;6\right\}\)

hay \(n\in\left\{0;1;2;5\right\}\)

27 tháng 4 2017

Gọi \(d=ƯCLN\left(a,b\right)\Rightarrow\left\{{}\begin{matrix}a=d.a_1\\b=d.b_1\\UCLN\left(a_1;b_1\right)=1\end{matrix}\right.\)

\(a+2b=48\Rightarrow d.a_1+2d.b_1=48\)

\(d\left(a_1+2b_1\right)=48\) \(\left(1\right)\)

\(ƯCLN\left(a,b\right)+3.BCNN\left(a,b\right)=114\)

\(\Rightarrow d+d.a_1.b_1=114\)

\(d\left(1+3.a_1.b_1\right)\)\(=114\)\(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow d\inƯC\left(48;114\right)\)

\(ƯCLN\left(48;114\right)=6\)

\(\Rightarrow d\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)

Rồi bn lần lượt thay \(d\) vào \(\left(1\right)\)\(\left(2\right)\) bn sẽ thấy được chỉ có \(d=6\) là thỏa mãn

\(+\))\(d=6\) ta có bảng sau :

\(a_1\) \(b_1\) \(a\) \(b\) \(Đk\) \(a,b\in N\)
\(2\) \(3\) \(12\) \(18\) \(TM\)
\(6\) \(1\) \(36\) \(6\) \(TM\)

Vậy cặp giá trị \(\left(a,b\right)\) cần tìm là :

\(\left(12;36\right);\left(18;6\right)\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $ƯCLN(a,b)=21$ nên đặt $a=21x, b=21y$ với $x,y$ là stn, $x,y$ nguyên tố cùng nhau.

Ta có:

$BCNN(a,b)=21xy=420\Rightarrow xy=20$ (1)

$a+21=b$

$\Rightarrow 21x+21=21y$

$\Rightarrow x+1=y$ (2)

Từ $(1); (2)$ và $x,y$ là 2 số nguyên tố cùng nhau nên $x=4, y=5$

$\Rightarrow a=21x=21.4=84; b=21y=21.5=105$

29 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath

Giả sử d = (a;b). Khi đó ta có:

\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

hok tốt

6 tháng 9 2016

Ta có: UCLN(a;b) = 15  => a = 15m và b = 15n (Với m ; n khác 0)

Ta lại có: BCNN(a;b) = 300

Mà: a . b = BCNN(a;b) . UCLN(a;b)

=> a . b = 300 . 15 = 4500  (*)

Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500

=> 225 . mn = 4500  => mn = 4500 : 225   => mn = 20

Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20

+) Với m = 4 và n = 5 thì a = 60 và b = 75

+) Với m = 5 và n = 4 thì a = 75 và b = 60

+) Với m = 1 và n = 20 thì a = 15 và b = 300

+) Với m = 20 và n = 1 thì a = 300 và b = 15

15 tháng 1 2018

Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).

Ta lại có : BCNN ( a ; b ) = 300

Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )

=> a . b = 300 . 15 = 4500 (*)

Thay a = 15m và b = 15n vào (*) ta được :

15m . 15n = 4500

<=> ( 15 . 15 ) mn = 4500

<=> 225mn = 4500

<=>       mn = 4500 : 225

<=>       mn = 20

Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20

=> Ta có bảng :

m45120
n54201
a607515300
b756030015