K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

13 tháng 4 2016

ai có cách làm hợp lí và nhanh thì mình sẽ k người đó

13 tháng 4 2016

Bài 1:

TH1:  x+1/2 = 0 => x= -1/2

TH2:  2/3 - 2x =0 => 2x= 2/3 => x= 2/3 : 2= 1/3

Vậy x= -1/2 hoặc x= 1/3

20 tháng 2 2018

3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.

21 tháng 7 2016

Bài 1:

\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)

=>2 chia hết x+1

=>x+1 thuộc Ư(2)={1;-1;2;-2}

=>x thuộc {0;-2;1;-3}

Bài 2:

Gọi d là UCLN(2n+3;4n+8)

Ta có:

[2(2n+3)]-[4n+8] chia hết d

=>[4n+6]-[4n+8] chia hết d

=>-2 chia hết d =>d={1;2}

với d=2 ps ko tối giản ->d=1

Vậy ps tối giản

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) B= \(\frac{x-2}{x+3}\)C = \(\frac{2.x+1}{x-3}\)bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.bài 3 :...
Đọc tiếp

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) 

B= \(\frac{x-2}{x+3}\)

C = \(\frac{2.x+1}{x-3}\)

bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.

bài 3 : tính

A= \(\left(1-\frac{2}{5}\right)\)\(\left(1-\frac{2}{7}\right)\).\(\left(1-\frac{2}{9}\right)\).......\(\left(1-\frac{2}{2011}\right)\)

B= \(\left(1+\frac{2}{3}\right)\).\(\left(1+\frac{2}{5}\right)\).\(\left(1+\frac{2}{7}\right)\).........\(\left(1+\frac{2}{2009}\right)\)\(\left(1+\frac{2}{2011}\right)\)

bài 4 : chứng tỏ rằng 

\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ .......+ \(\frac{1}{49.50}\)< 1

bài 5: rút gọn biểu thức sau

A= \(\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

1
20 tháng 4 2017

bài 1 A là số nguyên <=> 3 chia hết cho (x-1) <=> (x-1) thuộc Ư(3) = { 1;-1;3;-3}

<=> x thuộc {2;0;4;-2}

1 tháng 5 2015

2a) Ta có:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{1.\left(n+a\right)}{n.\left(n+a\right)}-\frac{1.n}{\left(n+a\right).n}=\frac{n+a-n}{\left(n+a\right).n}=\frac{a}{n.\left(n+a\right)}\)
=> đpcm

11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho