K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

10 tháng 9 2019

Bài 1. Tính các tổng sau:

1. S= 1+2+3+4+.................+98+99+100

S=( 100 - 1 ): 1 + 1 = 100

2. S= 2+4+6+8+.................+996+998

S = ( 998 - 2 ) : 2 + 1 = 499

3. S= 1.2+2.3+3.4+.............+98.99+99.100

S= 1.2 3-0 +2.3 (4-1) +3.4 

4. S= 1.2.3+2.3.4+3.4.5+..............+97.98.99+98.99.100

S= (100 -1) + 1 : 1 = 100

5. S= 1+2+3+..........+98+99+100

S=( 100 - 1) + 1   : 1

S= 100 

10 tháng 9 2019

1.S=(1+100)+(2+99)+...(50+51)  (Tổng cộng có 50 cặp)

S=101+101+101+...101

S=101 x 50=5050

=>S= 5050

11 tháng 9 2019

a. Áp dụng CT: n.9n+1)/2

=>S=(101.100)/2

b. SSH=(998-2) : 2+1

TBC=(998+2):2

Nhân SSH với TBC => S

c.

Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101  3S = 3.33.100.101 
 A=33.100.101= 333300

d.

Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101

4A=98.99.100.101

=>A=98.99.100.101/4

11 tháng 9 2019

a. S= 1+2+3+4+.....+98+99+100

S= (100 -1) : 1 + 1 =100

b. S= 2+4+6+8+.....+996+998

S= (998 -  2 ) : 2 + 1 = 499

c. S= 1.2+2.3+3.4+.....+98.99+99.100

Bài này hôm qua đã làm -.- vào thống kê của tôi mà nhìn :)

d. S= 1.2.3+2.3.4+3.4.5+......+97.98.99+98.99.100

S = (1.2.3.2.3.4.5.4.5.6+98.99.100)4

S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+97.98.99+98.99.100

S=101 - 97

S=1.2.3.5.2.4.+2.1.2.3.4.3.4.5.5.6-2.4.5.4.5.6.7-3.4.5.6-3.4.5.6+.......100

S=1.2.3.3.4.5.5.6.7.7.8.9......+97.98.99+98.99.100

S=1.2.3.4.4.3.2.1+2.3.5-2.3.4.5+3.4.5.6.6.7.3.4.5.6+........97.98.99+98.99.100

S= 98.99.100.101

S=98.99.100.\(\frac{101}{4}\)

e. S= 12+22+32+.....982+992+1002

S= 100- 992 + 982 -972 +...+ 22- 12

S= (100 - 99) (100+99) (98 - 97) (98+97) +....+(2-1) (2+1)

S=(1+100) 100 :2

s=5050

30 tháng 9 2018

Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )

         S = (50+1) x 50 : 2 = 1275

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 1:

$A=1.2+2.3+3.4+...+201.202$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$

$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$

$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$

$=201.202.203$

$\Rightarrow A=\frac{201.202.203}{3}=2747402$

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 2:

$S=4.5+5.6+6.7+....+100.101$

$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$

$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$

$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$

$=100.101.102-3.4.5$

$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$

DD
8 tháng 8 2021

a) \(S=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

b) \(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

\(S=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

c) \(S=1.4+2.5+3.6+...+n\left(n+3\right)\)

\(=1.2+1.2+2.3+2.2+3.4+3.2+...+n\left(n+1\right)+2n\)

\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)+2\left(1+2+3+...+n\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+n\left(n+1\right)\)

\(=\frac{n\left(n+1\right)\left(n+5\right)}{3}\)

24 tháng 4 2016

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

= \(2\left(1-\frac{1}{100}\right)\)

 =\(2.\frac{99}{100}\)

 =\(\frac{99}{50}\)

12 tháng 3 2018

BÀI 1:

\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)

\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)

\(S=1+1-\frac{1}{8}\)

\(S=\frac{15}{8}\)

BÀI 2:

\(A=1.2+2.3+3.4+...+98.99\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)

\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)

\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)

\(3A=98.99.100\)

\(3A=970200\)

\(\Rightarrow A=970200:3\)

\(A=323400\)

CHÚC BN HỌC TỐT!!!
 

30 tháng 11 2015

mk k vt lại đề nha

S=2.(1/1.2+1/2.3+1/3.4+............+1/99.100)

S=2.(1-1/2+1/3-1/4+1/4-1/5+.............+1/99-1/100)

S=2.(1-1/100)

S=2.99/100

S=198/100

8 tháng 5 2018

S=\(\frac{2}{1.2}\)+\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{98.99}\)+\(\frac{2}{99.100}\)

S=\(\frac{2}{1}\).(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\))

S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{98}\)-\(\frac{1}{99}\)+\(\frac{1}{99}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).(\(\frac{100}{100}\)-\(\frac{1}{100}\))

S=\(\frac{2}{1}\).\(\frac{99}{100}\)

S=\(\frac{99}{50}\)

Vậy S=\(\frac{99}{50}\)