K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 1:

$A=1.2+2.3+3.4+...+201.202$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$

$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$

$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$

$=201.202.203$

$\Rightarrow A=\frac{201.202.203}{3}=2747402$

AH
Akai Haruma
Giáo viên
29 tháng 1

Bài 2:

$S=4.5+5.6+6.7+....+100.101$

$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$

$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$

$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$

$=100.101.102-3.4.5$

$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$

10 tháng 9 2019

Bài 1. Tính các tổng sau:

1. S= 1+2+3+4+.................+98+99+100

S=( 100 - 1 ): 1 + 1 = 100

2. S= 2+4+6+8+.................+996+998

S = ( 998 - 2 ) : 2 + 1 = 499

3. S= 1.2+2.3+3.4+.............+98.99+99.100

S= 1.2 3-0 +2.3 (4-1) +3.4 

4. S= 1.2.3+2.3.4+3.4.5+..............+97.98.99+98.99.100

S= (100 -1) + 1 : 1 = 100

5. S= 1+2+3+..........+98+99+100

S=( 100 - 1) + 1   : 1

S= 100 

10 tháng 9 2019

1.S=(1+100)+(2+99)+...(50+51)  (Tổng cộng có 50 cặp)

S=101+101+101+...101

S=101 x 50=5050

=>S= 5050

10 tháng 9 2019

Ngu như con bò

10 tháng 9 2019

vay sao chi

30 tháng 9 2018

Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )

         S = (50+1) x 50 : 2 = 1275

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

6 tháng 5 2019

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

6 tháng 5 2019

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

3 tháng 1 2016

S = 1.2 + 2.3 + 3.4 +...+99.100

3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100

3S = 99.100.101

3S = 999900

S = 333300

P = 1 + 3 + 5 + 7 +...+ 2015

P = (2015 + 1)1008 : 2 

P = 1016064

T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100

T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)

T = (-4) + (-4) +...+ (-4)     

T = (-4)25

T = -100

3 tháng 1 2016

S=999900

P=1016064

T=-100

15 tháng 8 2023

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt