Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
a: \(40=2^3\cdot5;24=2^3\cdot3\)
=>\(ƯCLN\left(40;24\right)=2^3=8\)
=>\(ƯC\left(40;24\right)=Ư\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
b: \(12=2^2\cdot3;52=2^2\cdot13\)
=>\(ƯCLN\left(12;52\right)=2^2=4\)
=>\(ƯC\left(12;52\right)=\left\{1;-1;2;-2;4;-4\right\}\)
c: \(36=2^2\cdot3^2;990=2\cdot3^2\cdot5\cdot11\)
=>\(ƯCLN\left(36;990\right)=3^2\cdot2=18\)
=>\(ƯC\left(36;990\right)=\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
2:
a: \(12=2^2\cdot3;18=3^2\cdot2\)
=>\(ƯCLN\left(12;18\right)=2\cdot3=6\)
b: \(12=2^2\cdot3;10=2\cdot5\)
=>\(ƯCLN\left(12;10\right)=2\)
c: \(24=2^3\cdot3;48=2^4\cdot3\)
=>\(ƯCLN\left(24;48\right)=2^3\cdot3=24\)
d: \(300=2^2\cdot3\cdot5^2;280=2^3\cdot5\cdot7\)
=>\(ƯCLN\left(300;280\right)=2^2\cdot5=20\)
a:UCLN(12;18)=6
BCNN(12;18)=36
b: UCLN(24;36;60)=12
BCNN(24;36;60)=360
a: UCLN(24;36)=12
BCNN(24;36)=216
b: BCNN(24;36;60)=360
UCLN(24;36;60)=12
Lời giải:
Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=96$
$\Rightarrow 12x+12y=96$
$\Rightarrow x+y=8$.
Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$
$\Rightarrow (a,b)=(12, 84), (36,60), (60,36), (84,12)$
a, b: Bạn xem lại đề.
c.
Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=12x+12y=120\Rightarrow x+y=10$
Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108. 12), (84, 36)$
d.
Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:
$a+b=28x+28y=224$
$\Rightarrow x+y=8$
Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$
$\Rightarrow (a,b)=(196, 28), (140, 84)$
A/
12= 22.3
60=22.3.5
ƯCLN(12,60)=22.3.5=60
B/
24=23.3
88=23.11
ƯCLN(24,88)=23.3.11=264
C/
96=25.3
224= 25.7
ƯCLN(96,224)=25.3.7=672
D/
34=2.17
96=25.3
ƯCLN(34,96)=25.3.17=1632
Chúc bạn học tốt