Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy
b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz
c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2
d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy
e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4
f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz
a: A=-2xy+3/2xy^2+1/2xy^2+xy
=-2xy+xy+3/2xy^2+1/2xy^2
=2xy^2-xy
b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)
\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)
c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)
\(=7x^4-x^2+3x^2y^3\)
d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)
=1/4xy^2+xy
e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)
\(=-2x^2-y^3+2z^4\)
f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)
\(=6xy^2z-4xyz\)
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
a) \(\dfrac{1}{4}x^2y^3\cdot\left(-\dfrac{2}{3}xy\right)\)
\(=\left(\dfrac{1}{4}\cdot-\dfrac{2}{3}\right)\cdot\left(x^2\cdot x\right)\cdot\left(y^3\cdot y\right)\)
\(=-\dfrac{1}{6}x^3y^4\)
b) \(\left(2x^3\right)^3\cdot\left(-5xy^2\right)\)
\(=8x^9\cdot\left(-5xy^2\right)\)
\(=\left(8\cdot-5\right)\cdot\left(x^9\cdot x\right)\cdot y^2\)
\(=-40x^{10}y^2\)
a) \(\dfrac{1}{4}x^2y^3.\left(-\dfrac{2}{3}xy\right)\)
\(=-\dfrac{1}{6}x^3y^4\)
Nên bậc của đơn thức là 7
b) \(\left(2x^3\right)^3.\left(-5xy^2\right)\)
\(=8x^9.\left(-5xy^2\right)\)
\(=-40x^9y^2\)
Nên bậc của đơn thức là 11
\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)
\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)
Ta có : (x2 - 1)(x + 2) - (x - 2)(x2 + 4x + 4)
= (x2 - 1)(x + 2) - (x - 2)(x + 2)2
= (x2 - 1)(x + 2) - [(x - 2)(x + 2)](x + 2)
= (x2 - 1)(x + 2) - (x2 - 4)(x + 2)
= (x + 2)(x2 - 1 - x2 + 4)
= (x + 2).3
= 3x + 6
bn chép lại đề các câu nhé
a/ \(=\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x^2-1-x^2+4\right)=3\left(x+2\right)\)
b/ \(=x^3-3x^2+3x-1-x^3+1=-3x\left(x-1\right) \)
bài 2
a/ \(=9+6xy+x^2y^2\)
b/ bn ghi lại đề được không?? có gì đó kì kì ở đề á
c/ \(=\frac{\left(4y-1\right)^2}{16x^2}=\frac{16y^2-8y+1}{16x^2}\)
câu a là hằng đảng thức số 1 đó bn, còn câu c: bình phương của từng cái(tử và mẫu) rồi khai triển ra là được bạn ạ
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
Bài 1 :
a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)
\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)
\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)
d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)
\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)
\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)
e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)
= \(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)
\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)
Bài 2 :
3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15
Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)
\(=-\frac{15}{2}-3+15=\frac{9}{2}\)
b) 25x - 4(3x - 1) + 7(5 - 2x)
= 25x - 12x + 4 + 35 - 14x
= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39
Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37
c) 4x - 2(10x + 1) + 8(x - 2)
= 4x - 20x - 2 + 8x - 16
= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18
Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)
d) Tương tự
Bài 3:
a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)
=> 2x2 - 8x - 2x2 - 3x = 4
=> (2x2 - 2x2) + (-8x - 3x) = 4
=> -11x = 4
=> x = \(-\frac{4}{11}\)
b) x(5 - 2x) + 2x(x - 7) = 18
=> 5x - 2x2 + 2x2 - 14x = 18
=> 5x - 14x = 18
=> -9x = 18
=> x = -2
Còn 2 câu làm tương tự
\(A=7x^3y-\dfrac{1}{2}xy-4x^3-5x-2+5xy\)
\(=7x^3y+\left(5-\dfrac{1}{2}\right)xy-4x^3-5x-2\)
\(=7x^3y+4,5xy-4x^3-5x-2\)
Đa thức A có Bậc 4.
\(B=-\dfrac{4}{3}xyz-\dfrac{1}{3}xy^2x+4-5xyz+3x^2y^2\)
\(=-\left(\dfrac{4}{3}+5\right)xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)
\(=-\dfrac{19}{3}xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)
Đa thức B có Bậc 4.