Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cần tìm là :
1234567890+987654321= 2222222211
Đáp số : 2222222211
Chúc bạn hok tốt !
Ta có : a/b = (a+6)/(b+21)
=> a (b+21) = b (a+6)
=> ab + 21a = ab + 6b
=> 21a=6b
=> a/b = 6/21
Mong bạn học tốt ^^
Ta có \(\frac{a}{b}=\frac{a+6}{b+21}\)
\(\Rightarrow a\left(b+21\right)=b\left(a+6\right)\)
\(\Rightarrow ab+21a=ab+6b\)
\(\Rightarrow21a=6b\)
\(\Rightarrow\frac{a}{b}=\frac{6}{21}=\frac{3}{7}\)
\(A=\frac{\left(53+1\right).107-53}{53.107+54}=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1.\)
\(B=\frac{\left(134+1\right).269-133}{134.269+135}=\frac{134.269+269-133}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow A< B\)
Sao lâu vậy. Không nhanh thì... 👎👎👎👎👎👎. Hy vọng mn nhanh hơn.
THAM KHẢO :
A = 53.107 + 54 53 + 1 .107 − 53
= 53.107 + 54 53.107 + 107 − 53
= 53.107 + 54 53.107 + 54 = 1.
B = 134.269 + 135 134 + 1 .269 − 133
= 134.269 + 135 134.269 + 269 − 133
= 134.269 + 135 134.269 + 136 > 1
⇒A < B
Gọi tử số của phân số đó là:a.
Mẫu số của phân số đó là:b.
Ta có: a/b = 32/60 => a = 32/60xb
Mà: a+b=161
Thay a = 32/60xb vào a+b=161 ta được:
32/60xb+b=161
Quy đồng mẫu số, ta có:
32xb+60xb=161x60
92xb=9660
b=9660:92=105
Tử số là: 161-105=56
Vậy phân số đó là: 56/105.
Bài 1 :
\(a\))Ta có :
\(A=\dfrac{54.107-53}{53.107+54}\)\(=\dfrac{\left(53+1\right).107-53}{53.107+54}\)\(=\dfrac{53.107+107-53}{53.107+54}\)\(=\dfrac{53.107+54}{54.107+54}=1\)
\(B=\dfrac{135.269-133}{134.269+133}=\dfrac{\left(134+1\right).269-133}{134.269+133}\)\(=\dfrac{134.269+269-133}{134.269+133}\)\(=\dfrac{134.269+135}{134.269+135}+\dfrac{1}{134.269+135}\)\(=1+\dfrac{1}{134.269+135}\)\(>1\)\(=A\)
\(\Rightarrow A>B\)
~ Học tốt ~
b) Ta có :
\(10A=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=\dfrac{10^{12}-1}{10^{12}-1}+\dfrac{-9}{10^{12}-1}\)\(=1+\dfrac{-9}{10^{12}-1}\)\(\left(1\right)\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=\dfrac{10^{11}+1}{10^{11}+1}+\dfrac{9}{10^{11}+1}\)\(=1+\dfrac{9}{10^{11}+1}\)\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow A< B\)