K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)

\(=4m^2-8m+4-8m-8+8\sqrt{2}\)

\(=4m^2-16m+8\sqrt{2}-4\)

Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)

=>\(m^2-4m+2\sqrt{2}-1=0\)

=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)

NV
11 tháng 6 2021

Để (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(m+3\right)^2-m-1\ge0\\x_1+x_2=2\left(m+3\right)>0\\x_1x_2=m+1>0\end{matrix}\right.\) \(\Rightarrow m>-1\)

\(P=\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|>0\Rightarrow P^2=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}\)

\(P^2=\dfrac{x_1+x_2-2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{2\left(m+3\right)-2\sqrt{m+1}}{m+1}=\dfrac{4}{m+1}-\dfrac{2}{\sqrt{m+1}}+2\)

\(P^2=\left(\dfrac{2}{\sqrt{m+1}}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\Rightarrow P\ge\dfrac{\sqrt{7}}{2}\)

Dấu "=" xảy ra khi \(\sqrt{m+1}=4\Rightarrow m=15\)

4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)

c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)

\(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)

Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)

4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =

b) Phương trình √3x2 – (1 - √3)x – 1 = 0

Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =

c) (2 - √3)x2 + 2√3x – (2 + √3) = 0

Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0

Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 =

Nhiều thế, chắc phải đưa ra đáp thôi

30 tháng 7 2021

câu a 

Gọi xlà nghiệm chung của PT(1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\)  Lấy (1)-(2) ,ta được 

PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0

     \(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)

      \(\Leftrightarrow m=\dfrac{12}{11}\)

 

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

NV
30 tháng 7 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x^2-2mx+m^2-m+3=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2m+m^2-m+3\ne0\\\Delta'=m^2-\left(m^2-m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+4\ne0\left(\text{luôn đúng}\right)\\m>3\end{matrix}\right.\) 

Vậy \(m>3\)

b.

Phương trình có 3 nghiệm pb khi và chỉ khi: \(mx^2+3x+m=0\) có 2 nghiệm pb khác 3

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\9m+9+m\ne0\\\Delta=9-4m^2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{9}{10}\\-\dfrac{3}{2}< m< \dfrac{3}{2}\end{matrix}\right.\)