Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông ABC và tg vuông HBA có \(\widehat{ACB}=\widehat{HAB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABC đồng dạng với tg HBA (g.g.g)
b/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=5\sqrt{5}\) (Pitago)
\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông băng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{81}{5\sqrt{5}}=\dfrac{81\sqrt{5}}{25}\)
\(\Rightarrow CH=BC-BH=5\sqrt{5}-\dfrac{81\sqrt{5}}{25}=\dfrac{44\sqrt{5}}{25}\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phường đường cao thuộc cạnh huyền băng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=\dfrac{81\sqrt{5}}{25}.\dfrac{44\sqrt{5}}{25}\) Khai căn ra AH
c/
Xét tg vuông BHI và tg vuông BEC có \(\widehat{CBE}\) chung
=> tg BHI đồng dạng với tg BEC (g.g.g)
\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BE}\Rightarrow BI.BE=BH.BC\left(dpcm\right)\)
a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng vơi ΔHAC
=>CA/CH=CB/CA=AB/HA
=>CA^2=CH*BC và AB*HC=HA*CA
b: góc AID=góc BIH=90 độ=góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔADI cân tại A
a) Xét tam giác vuông BHI có \(\widehat{BIH}=90^o-\widehat{IBH}\)
Xét tam giác vuông ABD có \(\widehat{BDB}=90^o-\widehat{ABD}\)
Lại do BD là phân giác nên \(\widehat{IBH}=\widehat{ABD}\). Vậy thì \(\widehat{BIH}=\widehat{ADI}\)
Lại có \(\widehat{BIH}=\widehat{AID}\) (Hai góc đối đỉnh) nên \(\widehat{ADI}=\widehat{AID}\) hay tam giác AID cân tại A.
b) Do BD là phân giác nên DA = DK (Tính chất điểm thuộc tia phân giác)
Lại theo câu a, tam giác ADI cân tại A nên AD = AI. Vậy thì AI = DK
Ta có AH// DK (Cùng vuông góc với BC) nên \(\widehat{AID}=\widehat{IDK}\) (so le trong)
Vậy ta có \(\Delta AID=\Delta KDI\left(c-g-c\right)\)
c) Xét tam giác IEK có IH = HE nên KH là trung tuyến. Lại có KH cũng là đường cao. Vậy tam giác IEK cân tại K hay \(\widehat{HIK}=\widehat{HEK}\)
Lại có \(\widehat{HIK}=\widehat{IKD}\) (so le trong) nên \(\widehat{HEK}=\widehat{IKD}\)
Theo câu b, \(\Delta AID=\Delta KDI\Rightarrow\widehat{DAI}=\widehat{IKD}\)
Vậy nên \(\widehat{HEK}=\widehat{IAD}\)
Xét tứ giác ADKE có DK // AE nên nó là hình thang. Lại có \(\widehat{HEK}=\widehat{IAD}\) nên ADKE là hình thang cân.
(Có các cách chứng minh khác nhưng vì mới đầu lớp 8 nên cô sử dụng kiến thức liên quan đã học)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
mk vẽ tam giác ADI có cân đâu
Tam giác BHI vuông tại H => ^HIB+^B1=900 . Mà ^HIB=^AID (Đối đỉnh) và ^B1=^B2
=> ^AID+^B2=900 (1)
Tam giác BAD vuông tại A => ^ADB+^B2=900 hay ^ADI+^B2=900 (2)
Từ (1) và (2) => ^AID=^ADI (cùng phụ với ^B2) =>Tam giác ADI cân tại A (đpcm)