Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.
a) Vì O lầ điểm cách đều 3 cạnh của \(\Delta ABC\) nên:
+) \(OD=OE=OF\)
+) \(AO\), \(BO\) và \(CO\) là 3 đường phân giác của \(\Delta ABC\)
Xét \(\Delta BFO\) và \(\Delta BDO\) có:
\(\widehat{BFO}\)=\(\widehat{BDO}\)=90o
\(BO\) chung
\(OF=OD\) (CMT)
\(\Rightarrow\Delta BFO=\Delta BDO\) (ch-cgv)
\(\Rightarrow BF=BD\)
\(\Rightarrow\Delta BFD\) cân tại \(B\)
\(\Rightarrow\widehat{BFD}\)=\(\widehat{BDF}\)= ( \(180^o\)- \(\widehat{FBD}\)) : 2 \(\left(1\right)\)
Vì \(BA=BM\) (gt) nên \(\Delta BAM\) cân tại \(B\)
\(\Rightarrow\widehat{BAM}\)=\(\widehat{BMA}\)= (\(180^o\)-\(\widehat{ABM}\)) : 2 \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\widehat{BFD}\)=\(\widehat{BAM}\) mà chúng ở vị trí đồng vị nên \(DF\)//\(AM\)
\(\Rightarrow\) Tứ giác \(AFDM\) là hình thang \(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) \(AFDM\) là hình thang cân
\(\Rightarrow\) \(MF=AD\) \(\left(4\right)\)
CM tương tự ta được: \(AEDN\) là hình thang cân
\(\Rightarrow\) \(NE=AD\) \(\left(5\right)\)
Từ \(\left(4\right)\) và \(\left(5\right)\) \(\Rightarrow MF=NE\)
b) Xét \(\Delta ODM\) và \(\Delta OFA\) có:
\(OD=OF\) (CMT)
\(\widehat{ODM}\)=\(\widehat{OFA}\)=\(90^o\)
\(OM=FA\) (\(AFDM\) là hình thang cân)
\(\Rightarrow\Delta ODM=\Delta OFA\) (c.g.c)
\(\Rightarrow OM=OA\left(6\right)\)
CM tương tự ta được \(\Delta ODN=\Delta OEA\) (c.g.c)
\(\Rightarrow\)\(ON=OA\) \(\left(7\right)\)
Từ \(\left(6\right)\) và \(\left(7\right)\) \(\Rightarrow OM=ON\)
\(\Rightarrow\) \(\Delta MON\) cân tại \(O\)
Mình biết bài này là từ 2019 rồi nhưng mà đề này mình thấy chưa ai làm nên mình làm để có bạn nào tìm thì sẽ có để tham khảo.
vâng baayh là 2022 r nhưng e vẫn tìm câu trl của tiền bối ạ :33
1,Cho tam giác ABC gọi G là trọng tâm.Đường thẳng d không cắt tam giác ABC.Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d.Chứng minh rằng GG'=(AA'+BB'+CC')/3
bạn dúp mình giải đc ko
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC