K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
16 tháng 12 2020

bài 1.a. điều kiện xác định của phân thức là \(x^3-8\ne0\Leftrightarrow x\ne2\)

b .ta có \(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x+2}\)

bài 2.

\(A=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right).\frac{\left(x+1\right)^2}{2x+1}\)

\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right).\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow A=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x+1\right)^2}{2x+1}=\frac{x+1}{x-1}\)

khi \(x=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}-1}=-3\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

30 tháng 1 2019

Câu 3 : 

\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)  ĐKXđ : \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(A=\frac{10}{x+1}\)

30 tháng 1 2019

\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)

ĐKXđ : \(x\ne0;x\ne3\)

\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)

\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)

11 tháng 2 2020

a) \(ĐKXĐ:x\ne1\)

b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)

\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)

\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(=\frac{1}{x-1}\)

c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .

P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.

Tại thấy câu c k khác j câu a !

18 tháng 12 2016

a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)

b, Giá trị của x để phân thức có giá trị bằng (-2) : 

\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)

18 tháng 12 2016

Ai giúp mình câu 2 với

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

23 tháng 12 2020

a) Điều kiện: \(x\ne0;x\ne1\)

b) \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)

\(A=\left(\frac{x}{x-1}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)

\(A=\left(\frac{x^2}{\left(x-1\right).x}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)

\(A=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}.\frac{x}{\left(x+1\right)^2}\)

\(A=\frac{x+1}{x}.\frac{x}{\left(x+1\right)^2}=\frac{1}{x+1}\)

c) Thay: \(x=2\)vào \(\frac{1}{x+1}\)ta có: \(A=\frac{1}{2+1}=\frac{1}{3}\)

23 tháng 12 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

b)

\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)

\(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{x^2+2x+1}\)

\(A=\left(\frac{x\cdot x}{x\left(x-1\right)}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{\left(x+1\right)^2}\)

\(A=\frac{x^2-1}{x\left(x-1\right)}\cdot\frac{x}{\left(x+1\right)^2}=\frac{\left(x^2-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{1}{x+1}\)

c) \(A=\frac{1}{x+1}=\frac{1}{2+1}=\frac{1}{3}\)

Vậy \(A=\frac{1}{3}\)