K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

a) Ta có: \(A=\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-x^2-1}\right)\)

\(=\dfrac{2x^2+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{2x^2+1}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2+1}{x-1}\)

b) Thay \(x=-\dfrac{1}{2}\) vào A, ta được:

\(A=\left(2\cdot\dfrac{1}{4}+1\right):\left(\dfrac{-1}{2}-1\right)\)

\(=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

c) Để A<1 thì A-1<0

\(\Leftrightarrow\dfrac{2x^2+1}{x-1}-1< 0\)

\(\Leftrightarrow\dfrac{2x^2+1-x+1}{x-1}< 0\)

\(\Leftrightarrow\dfrac{2x^2-x+2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

hay x<1

19 tháng 7 2021

câu c xét hiệu à bạn

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)

\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)

\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)

b: 2x^2+7x+3=0

=>(2x+3)(x+2)=0

=>x=-3/2(loại) hoặc x=-2(nhận)

Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)

d: |B|<1

=>B>-1 và B<1

=>B+1>0 và B-1<0

=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)

30 tháng 4 2023

CẢM ƠN BẠN NHA

 

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c: Để A nguyên thì x+1-2 chia hết cho x+1

=>\(x+1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{0;-2;-3\right\}\)

19 tháng 6 2021

a) đk: x khác 0;2;-2;3

A = \(\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)

\(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{2-x}{2+x}\right):\dfrac{x-3}{2x-x^2}\)

\(\left(\dfrac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{x\left(2-x\right)}\)

\(\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}=\dfrac{4x^2}{x-3}\)

b) Có \(\left|x-5\right|=2\)

<=> \(\left[{}\begin{matrix}x-5=2< =>x=7\left(Tm\right)\\x-5=-2< =>x=3\left(L\right)\end{matrix}\right.\)

Thay x = 7 vào A, ta có:

\(A=\dfrac{4.7^2}{7-3}=49\)

c) A = \(\dfrac{4x^2}{x-3}⋮4\left(\forall x\right)\)