K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

a) 

`f(x)=3x^2+x+x^4-x^3-x^2+2x+3`

`=x^4-x^3+2x^2+3x+3`

`g(x)=x^4+2x^2+x^3=x^4+x^3+2x^2`

b)

Bậc của `f(x)`: 4

Bậc của `g(x)`: 4

c)

`h(x)=f(x)+g(x)=x^4-x^3+2x^2+3x+3+x^4+x^3+2x^2`

`=2x^4+4x^2+3x+3`

`k(x)=g(x)-f(x)=x^4+x^3+2x^2-(x^4-x^3+2x^2+3x+3)`

`=x^4+x^3+2x^2-x^4+x^3-2x^2-3x-3`

`=2x^3-3x-3`

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

8 tháng 5 2022

giúp mình pls khocroi

8 tháng 5 2022

tham khảo link: https://qanda.ai/vi/solutions/uYjsva7GWp

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

a: F(x)=2x^3-1/2x^3-x^5+3x^5+3x^4-x^4+x^2-2x^2+1

=2x^5+2x^4+3/2x^3-x^2+1

b: bậc là 5

c: F(1)=2+2+3/2-1+1=4+3/2=11/2

F(-1)=-2+2-3/2-1+1=-3/2

loading...  loading...  *xl cậu nha ;-; câu cuối mình chưa học nên kbiet làm ;-;;;.

a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)

\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)

\(=6x^4-4x^3-x+11\)

Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)

\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)

\(=5x^4-4x^3-2x^2-x+9\)

b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)

\(=x^4+2x^2+2\)