Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có (M) tiếp xúc với AB tại H (gt) => AB là tiếp tuyến với (M)
Xét tg vuông ACM và tg vuông AHM có
AM chung
MC=MH (bán kính (M))
=> tg ACM = tg AHM (Hai tg vuông vó cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AMC}=\widehat{AMH}\)
C/m tương tự khi xét 2 tg vuông BDM và BHM ta cũng có
\(\widehat{BMD}=\widehat{BMH}\)
Ta có
\(\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow\widehat{AMC}+\widehat{BMD}=\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\)
\(\Rightarrow\widehat{AMC}+\widehat{BMD}+\widehat{AMB}=90^o+90^o=180^o=\widehat{CMD}\)
=> C; M; D thẳng hàng
Ta có
\(AC\perp CD;BD\perp CD\) => AC//BD
b/ Ta có
AC//BD (cmt) => ACDB là hình thang
Mà
MC=MD (bán kính (M)
OA=OB=R
=> OM là đường trung bình của hình thang ACDB => OM//BD
Mà \(BD\perp CD\)
\(\Rightarrow OM\perp CD\) => CD là tiếp tuyến với (O)
c/
Ta có
AC=AH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
BD=BH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
\(\Rightarrow AC+BD=AH+BH=AB=2R\) không đổi
d/
Khi HC=HD => tg AHD cân tại H
Ta có MC=MD
\(\Rightarrow MH\perp CD\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Mà \(OM\perp CD\left(cmt\right)\)
\(\Rightarrow H\equiv O\)
Xét tg AMB có
\(MH\perp AB\Rightarrow MO\perp AB\)
Mà OA=OB
=> tg AMB cân tại M (tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
=> MA=MB => sđ cung MA = sđ cung MB (trong đường tròn 2 dây cung bằng nhau thì số đo 2 cung tương ứng bằng nhau)
=> M là điểm giưa cung AB
a/
Xét tg vuông OAC và tg vuông OMC có
OA=OM=R
OC chung
=> tg OAC = tg OMC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)
Tương tự ta cũng có
tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)
\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)
b/
AB+BD nhỏ nhất khi \(M\equiv B\)
bn tựu vẽ hk nha
a, dễ cm tứ giác ABCD là hình thang
ta có AD//MO//CB(cùng vuông góc vs DC)
A0=B0
từ đây suy ra DM=MC
B, TỪ M KẺ MH VUÔNG GÓC VS AB
TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)
LẠI CÓ GÓC AMO=GÓC MAO( do MO=AO) (2)
TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO
LẠI CÓ GÓC D=GÓC MHA=90
SUY RA TAM GIAC DMA=TAM GIAC HMA
SUY RA AD=AH
tự BC=HB
TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI
C, TA CÓ MH=DM=MC(CMT)
LẠI CÓ MHVUOONG GÓC VS AB
SUY RA DƯỜNG TRÒN CD TX VS AB
D, TRONG HT VUÔNG ABCD CÓ DC<=AB
SUY RA SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)
DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB