K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

Bài này có 2 cách!!

29 tháng 6 2018

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}}\)=\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\)\(|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{1+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}\)\(=|\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}|=1+\frac{1}{2}-\frac{1}{3}\)

Tương tự ta có M=\(1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{99}-\frac{1}{100}\)=\(98+\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)