K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:a/ n + 3 CHIA HẾT CHO n - 1b/ 4n + 3 CHIA HẾT CHO 2n + 1c/ (n + 5)(n - 3) = 15BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ...
Đọc tiếp

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.

BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:

a/ n + 3 CHIA HẾT CHO n - 1

b/ 4n + 3 CHIA HẾT CHO 2n + 1

c/ (n + 5)(n - 3) = 15

BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ THỨ 3 LÀ SỐ NGUYÊN TỐ HAY HỢP SỐ ?

BÀI 4: TÌM SỐ NGUYÊN TỐ p SAO CHO p + 10 VÀ p + 14 LÀ CÁC SỐ NGUYÊN TỐ.

BÀI 5: A/ TÌM HAI SỐ TỰ NHIÊN a, b BIẾT BCNN (a, b) = 300, ƯCLN (a, b) = 15

          B/ TÌM HAI SỐ TỰ NHIÊN a VÀ b BIẾT a, b = 2940 VÀ BCNN (a, b) = 210

BÀI 5: HỎI QUA n ĐIỂM PHÂN BIỆT CÓ BAO NHIÊU ĐOẠN THẲNG BIẾT CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG.

BÀI 6: CHO n ĐIỂM PHÂN BIỆT ( n ≥ 2, n Є N ) CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG VÀ QUA n ĐIỂM VẼ ĐƯỢC TẤT CẢ 300 ĐOẠN THẲNG. HỎI n BẰNG BAO NHIÊU ?

BÀI 7: CHO ĐOẠN THẲNG CD. TRÊN TIA ĐỐI CỦA TIA CD LẤY ĐIỂM A. TRÊN TIA ĐỐI CỦA TIA DC LẤY ĐIỂM B SAO CHO AC = BD. CHỨNG TỎ: AD = BC

 

 

0
3 tháng 10 2017

Bài 2: 

a. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2

Theo bài cho, ta có: n + (n+1) + (n+2) = 3n + 3

Vì 3 chia hết cho 3 => 3n chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b. Chứng minh tương tự câu a

c. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2 (n thuộc N)

Xét 3 trường hợp:

TH1: n chia cho 3 dư 0 

=> n chia hết cho 3

TH2: n chia cho 3 dư 1 

Có: n = 3q+1

n + 2 = 3q+1+2

n+2 = 3q + 3

n+2 = 3q + 3.1 

n+2 = 3.(q+1)

=> n+2 chia hết cho 3 

TH3: n chia cho 3 dư 2

Có: n = 3q+2

n + 1 = 3q+2+1

n+ 1 = 3q + 3

n+1 = 3q + 3.1

n+1 = 3.(q+1)

=> n+1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3

2 tháng 10 2017

a) gọi 3 số tự nhiên liên tieps là n ; n+1;n+2

ta có n+n+1+n+2 = nx3+3

vì 3 chia hết cho 3 ; nx3 chia hết cho 3. suy ra nx3+3 chia hết cho 3

vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3

b) gọi 4 số tự nhiên liên tiếp la n; n+1;n+2;n+3

ta có : n+n+1+n+2+n+3 = 4n+6 

vì 6 ko chia hết cho 4 ; 4n chia hết cho 4 . suy ra 4n+6  không chia hết cho 4

vậy 4 số tự nhiên liên tiếp không chia hết cho 4

c) gọi 3 số tự nhiên liên tiếp là n;n+1;n+2N

nếu n chia hết cho 3 thì bài toán luôn đúng 

nếu n chia3 dư 1 thì n = 3k +1 ( k thuộc N )

Suy ra n+2 = 3k+1+2 

           n+2 = 3k+3 chia hết cho 3

Nếu n chia 3 dư 2 thì n = 3k+2 ( k thuộc N )

Suy ra n+1 = 3k +2+1

           n+1 = 3k+3 chia hết  cho 3

Suy ra trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

d) gọi 2 số chẵn liên tiếp là 2k ; 2k+2

ta có :2k+2k+2 = 4k+2

vì 4k chia hết cho 4 ; 2khoong chia hết cho 4 .

Vậy tổng của 2 số chẵn liên tiếp  không chia hết cho 4

Bài 2 :

a) Để 2*5* chia 5 dư 2 thì * cuối nhận các già trị là : 2;7

Nếu * cuối bằng 2 thì :2+*+5+2= 9+*

=> * = 0;9

Nếu * cuối =7 thì : 2+*+5+7 = 14+*

=> * = 5 ; 7

Vậy nếu * cuối =2 thì * đầu nhận các giá trị 0;9

Vậy nếu * cuối = 7thì * đầu nhận các giá trị 5;7

b)

Để 4*5* có hàng đơn vị gấp 3 lần hàng trăm thì ta có các số là : 4153 ; 4256 ; 4359 

+) 4153 = 4+1+5+3 =13 không chia hết cho 9 ( loại)

+) 4256 = 4+2+5+6 = 17 không chia hết cho 9 ( loại )

+) 4359 = 4+3+5+9 =21 chia hết cho 9 ( thỏa mãn )

vậy số cần tìm la 4359

Bài 3 :

-) Với 5 điểm mà có 3 điểm thẳng hàng thì ta vẽ được : 9 đường thẳng 

-) với n điểm ta có :

         nx(n-1):2

22 tháng 1 2016

mình thi hs giỏi nhưng khó quá

Bài 1: (3điểm) Tính bằng cách hợp lý nhất:a. 2.31.12 + 4.6.42 + 8.27.3b. (68.8686 – 6868.86).(1+2+3+ …+ 2016)Bài 2: (3điểm) So sánha. b. 6315 và 3418Bài 3: (4điểm)a. Cho A = 21 + 22 + 23 + … + 230. Chứng minh rằng: A chia hết cho 21.b. Tìm các chữ số a, b sao cho số Bài 4: (3 điểm) Khối 6 của một trường có chưa tới 400 học sinh, khi xếp hàng 10; 12; 15 đều dư 3 nhưng nếu xếp hàng 11 thì không dư. Tính số học sinh...
Đọc tiếp

Bài 1: (3điểm) Tính bằng cách hợp lý nhất:
a. 2.31.12 + 4.6.42 + 8.27.3
b. (68.8686 – 6868.86).(1+2+3+ …+ 2016)
Bài 2: (3điểm) So sánh
a. 
b. 6315 và 3418
Bài 3: (4điểm)
a. Cho A = 21 + 22 + 23 + … + 230. Chứng minh rằng: A chia hết cho 21.
b. Tìm các chữ số a, b sao cho số 
Bài 4: (3 điểm) Khối 6 của một trường có chưa tới 400 học sinh, khi xếp hàng 10; 12; 15 đều dư 3 nhưng nếu xếp hàng 11 thì không dư. Tính số học sinh khối 6.
Bài 5: (6 điểm)
a. Cho đoạn thẳng AB = 8cm. Điểm C thuộc đường thẳng AB sao cho BC = 4cm. Tính độ dài đoạn thẳng AC.
b. Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau và không có ba đường thẳng nào cùng đi qua một điểm. Tính số giao điểm của chúng.
Bài 6: (1điểm) Tìm các số tự nhiên n có hai chữ số biết rằng 2n + 1 và 3n + 1 đều là các số chính phương.

2
5 tháng 12 2016

1a
 2.31.12 + 4.6.42 + 8.27.3
=(2.12).31 + (4.6).42 + (8.3).27
= 24.31 + 24.42 + 24.27
= 24.(31 + 42 + 27)
=24. 100
= 2400
1b
(1,5đ)
(68.8686 – 6868.86).(1+2+3+ …+ 2016)
= (68.86.111 – 68.111.86).(1+2+3+ …+ 2016)
= 0. (1+2+3+ …+ 2016) = 0
2a
Ta có 2711 = (33)11 = 333
818 = (34)8 = 332
Vì 333>332 nên 2711 > 818
Vậy 2711 > 818
2b
Ta có 6315 < 6415 =(26)15 = 290
3418 > 3218 = (25)18 =290
=> 6315 < 3418
Vậy 6315 < 3418
3a
(2đ)
A = 21 + 22 + 23 + … + 230
Ta có: A = 21 + 22 + 23+ … + 230
= (21 + 22) + (23 + 24) + … (229 + 230)
= 2.(1+2) + 23.(1+2) + … + 229.(1+2)
= 3.( 2 + 23 229) suy ra A  3 (1)
Ta có: A = 21 + 22 + 23+ … + 230
= (21 + 22 + 23) + (24 + 25 + 26) + … (228 +229 + 230)
= 2.(1+2+22) + 24.(1+2+22) + … + 228.(1+2+22)
= 7 (2 + 24 + … + 228) suy ra A  7 (2)
Mà (3,7) = 1. Kết hợp (1) và (2) => A 3.7 hay A  21 
3b
Ta có 45 = 5.9 và (5,9)=1
  và 
Vì  b= 0 hoặc b = 5
* TH1: b = 0   a+119
Mà 1a9 12a + 11 20a + 11 = 18 a = 7
* TH2: b = 5   a

5 tháng 12 2016

Còn lại tự giải nhé!

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
Bài 1. (4,5 điểm) Tính: a) 13 7 24 . 2 12 6 5   −   + −   − b) 3042014 152015 7 1 1 152014 3042015 12 3 4    − − −    + + −    c) 1 1 1 1 1 1 1 3 15 35 63 99 143 195 + + + + + + Bài 2. (5,0 điểm) a) Tìm x biết: 3 1 10 4 x − = . b) Tìm số nguyên x sao cho 2x 1 x 1 + − là số nguyên. Bài 3. (6,5 điểm) a) Chứng tỏ tổng abcabc + 22là hợp số. b) Tìm số tự nhiên có ba chữ số, biết...
Đọc tiếp

Bài 1. (4,5 điểm) Tính: a) 13 7 24 . 2 12 6 5   −   + −   − b) 3042014 152015 7 1 1 152014 3042015 12 3 4    − − −    + + −    c) 1 1 1 1 1 1 1 3 15 35 63 99 143 195 + + + + + + Bài 2. (5,0 điểm) a) Tìm x biết: 3 1 10 4 x − = . b) Tìm số nguyên x sao cho 2x 1 x 1 + − là số nguyên. Bài 3. (6,5 điểm) a) Chứng tỏ tổng abcabc + 22là hợp số. b) Tìm số tự nhiên có ba chữ số, biết rằng khi chia số đó cho các số 15; 21; 56 thì được các số dư lần lượt là 3; 9; 44. Bài 4. (4,0 điểm) a) Cho hai góc kề bù xOy và yOz, gọi Om là tia phân giác góc yOz. Vẽ tia On nằm giữa hai tia Ox và Oy sao cho góc mOn có số đo bằng 900 . Chứng tỏ On là tia phân giác góc xOy. b) Cho 23 điểm trong đó có đúng 3 điểm thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng trong hình vẽ? Giải thích? 

Bài 3 (2,0 điểm) Cho phân số n + 1 A= (n Z) n - 3 ∈ a) Tìm n để A là phân số. b) Tìm n để A là phân số tối giản. c) Tìm n để A có giá trị lớn nhất. 

giúp vs

0