K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

Vì (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 hay (65x + 20y) ⋮ 17 (1). Nếu (7x + 10y) ⋮ 17 => 2(7x + 10y) ⋮ 17 hay (14x + 20y) ⋮ 17 (2). Từ (1)(2) => (65x + 20y) - (14x + 20y) = 51x = 17.3x ⋮ 17 => (7x + 10y) ⋮ 17. Vậy (7x + 10y) ⋮ 17 (đpcm)

  
5 tháng 1 2022

Vì (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 hay (65x + 20y) ⋮ 17 (1). Nếu (7x + 10y) ⋮ 17 => 2(7x + 10y) ⋮ 17 hay (14x + 20y) ⋮ 17 (2). Từ (1)(2) => (65x + 20y) - (14x + 20y) = 51x = 17.3x ⋮ 17 => (7x + 10y) ⋮ 17. Vậy (7x + 10y) ⋮ 17 (đpcm)

9 tháng 1 2022

Vì sao (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 mình chưa hiểu sao có 5 bạn giải thích giúp mình

i don't now

mong thông cảm !

...........................

25 tháng 7 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

5 tháng 1 2022

Vì (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 hay (65x + 20y) ⋮ 17 (1). Nếu (7x + 10y) ⋮ 17 => 2(7x + 10y) ⋮ 17 hay (14x + 20y) ⋮ 17 (2). Từ (1)(2) => (65x + 20y) - (14x + 20y) = 51x = 17.3x ⋮ 17 => (7x + 10y) ⋮ 17. Vậy (7x + 10y) ⋮ 17 (đpcm)

7 tháng 1 2022

Bạn ơi vì sao (13x + 4y) ⋮ 17 thì 5.(13x+4y )⋮17

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

30 tháng 1 2017

7.(13x+18y )- 13.( 7x+4y ) = 91x+126 -91x + 52y =74y

=> 13(7x+4y)+74y=7(13x+18y)

mà 13(7x+4y) và 7y đều chia hết cho 37  nên 7(13x+18y) cx chia hết cho 37

vì (7;37) =1 => 13x+18y chia hết cho 37

30 tháng 1 2017

lm rùi học trước quên sau

13 tháng 2 2019

\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))

Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)

Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)

Chúc bạn học tốt!

13 tháng 2 2019

ta có 

A=9(7x+4y) - 2(13x+18y)

A=63x+36y-26x-36y

A=x(63-26)-(36y-36y)

A=37x

=>A chia hết cho 37

mà 7x+4y chia hết cho 37=>9(7x+4y)  chia hết cho 37

9(7x+4y)  chia hết cho 37=>2(13x+18y)

mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37

vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37

11 tháng 7 2019

#)Giải : 

Ta có : \(2\left(10x+y\right)-\left(3x+2y\right)=20x+2y-3x-2y=17a⋮17\)

\(\Rightarrow2\left(10x+y\right)-\left(3x+2y\right)⋮17\)

\(\Rightarrow2\left(10x+y\right)⋮17\)

Mà (2;10) = 1 \(\Rightarrow10x+y⋮17\left(đpcm\right)\)