K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

1

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)

=> M ko là số tự nhiên

2

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)

3

\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)

\(\Rightarrow35x+35y=2010x-2010y\)

\(\Rightarrow35-2010x=2010y-35y\)

\(\Rightarrow-175x=-245y\)

\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\)

\(\Rightarrow x=7k;y=5k\)

\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)

\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)

Vậy \(x=7;y=5\)

2 tháng 8 2019

bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3* 

Câu 1:a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)Câu 2:a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba...
Đọc tiếp

Câu 1:

a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(giả thiết các tỉ số đều có nghĩa)

b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

Câu 2:

a) Cho đa thức f(x)= \(ax^2+bx+c\)với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.

b) Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào?

Câu 3:

Cho tam giác ABC( AB= AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM= EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

Câu 4:

Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có giá trị lớn nhất.

Câu 5:

a) Cho a,b,c>0. Chứng tỏ rằng: M=\(\frac{a}{a+b}+\frac{b}{b+c}\frac{c}{c+a}\)không là số nguyên.

b) Cho a,b,b thoả mãn: a+b+c=0. Chứng minh rằng ab+bc+ca \(\le\)0.

Câu 6:

a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.

b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10;2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu?

Câu 7:

Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi \(\Delta APQ\) là 2. Chứng minh rằng góc PCQ bằng 45 độ. 

Ai biết làm thì giải dùm.

0
2 tháng 7 2016

Ta có: \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\left(1\right)\)

Theo t/c dãy tỉ số=nhau:

\(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{x+y+x-y}{\frac{1}{35}+\frac{1}{210}}=\frac{2x}{\frac{1}{30}}=2x.30=60x\left(2\right)\)

Từ (1) và (2) suy ra \(60x=\frac{xy}{\frac{1}{12}}=>\frac{60x}{xy}=\frac{1}{12}=< \frac{60}{y}=\frac{1}{12}=>y=720\)

Thay y=720 vào (1),ta có: \(\frac{x+720}{\frac{1}{35}}=\frac{x-720}{\frac{1}{210}}=>\left(x+720\right).35=\left(x-720\right).210=>35x+25200=210x-151200\)

\(=>x=1008\)

Vậy x=2008;y=720

18 tháng 2 2018

sao bên trên thì x=1008 bên dưới thì 2008

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương với mọi x,...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

9 tháng 10 2018

Em tham khảo bài tại link dưới đây:

Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath

Ta có: 
+tổng của chúng là (x + y) 
+hiệu của chúng là ( x-y ) 
+ tích của chúng là xy
Biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 , 
Tức là : 35(x + y) = 210(x - y) = 12xy 
Hay:x+yxy=21035x+yx−y=21035⇒ 35(x + y) = 210(x - y) => (x - y) = x+y6x+y6 (1) 
và (x - y) : xy = 12 : 210 => 12xy = 210(x - y) => (x - y) = 2xy352xy35 (2) 
Từ (1) ta có:xy1=x+y6=[(xy)+(x+y)]1+6=2x7x−y1=x+y6=[(x−y)+(x+y)]1+6=2x7 (3) (tc của dãy tỉ số bnhau)
Từ (1) ta lại có: xy1=x+y6=[(x+y)(xy)]61=2b4x−y1=x+y6=[(x+y)−(x−y)]6−1=2b4 (4) (tc của dãy tỉ số bnhau)
Từ (2) & (3) suy ra:2xy35=2x7y=5⇒2xy35=2x7⇒y=5
Từ (2) & (4) suy ra:2xy35=2y5x=72xy35=2y5⇒x=7
Vậy x = 7 và y = 5
AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:
Theo đề ra ta có:

$xz=a; zy=b; yx=a$

t là số nào trong này hả bạn?

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1: Cho biết x và y là hai đại lượng tỉ lệ thuận, x1 và x2 là hai giá trị khác nhau của x, y1 và y2 là hai giá trị tương ứng của y.a) Tính x1, biết y1 = -3, y2 = -2, x2 = 5b) Tính x2, y2 biết x2 + y2 = 10, x1 = 2, y1 = 3.Bài 2: Biết 4m dây thép nặng 100g. Hỏi 500m dây thép như thế nặng bao nhiêu kg?Bài 3: Chia số 490 thành ba phần:a) Tỉ lệ thuận với các số 2, 3, 5. b) Tỉ lệ thuận với các số .Bài 4*: Cho...
Đọc tiếp

Bài 1: Cho biết x và y là hai đại lượng tỉ lệ thuận, x1 và x2 là hai giá trị khác nhau của x, y1 và y2 là hai giá trị tương ứng của y.

a) Tính x1, biết y1 = -3, y2 = -2, x2 = 5

b) Tính x2, y2 biết x2 + y2 = 10, x1 = 2, y1 = 3.

Bài 2: Biết 4m dây thép nặng 100g. Hỏi 500m dây thép như thế nặng bao nhiêu kg?

Bài 3: Chia số 490 thành ba phần:

a) Tỉ lệ thuận với các số 2, 3, 5. b) Tỉ lệ thuận với các số .

Bài 4*: Cho biết y tỉ lệ thuận với x theo hệ số tỉ lệ -0,4 và x tỉ lệ thuận với z theo hệ số tỉ lệ 10. Hãy chứng tỏ rằng y tỉ lệ thuận với z và tìm hệ số tỉ lệ. Hỏi z có tỉ lệ thuận với y không? Nếu có thì hệ số tỉ lệ là bao nhiêu?

Bài 5: Một đội thủy lợi có 10 người làm trong 8 ngày đào đắp được 200m3 đất. Hỏi một đội khác có 12 người làm trong 7 ngày thì đào đắp được bao nhiêu mét khối đất?(Giả thiết năng suất của mỗi người như nhau).

Bài 6: Ba xưởng may cùng may một loại áo và dùng hết tổng số vải là 236m. Số áo may được của xưởng 1 và xưởng 2 tỉ lệ thuận với 3 và 4, số áo may được của xưởng 2 và xưởng 3 tỉ lệ thuận với 5và 6. Hỏi mỗi xưởng đã dùng hết bao nhiêu mét vải?

Bài 7: Tuổi anh cách đây 2 năm và tuổi em sau 4 năm nữa tỉ lệ thuận với 15 và 16. Tính tuổi của mỗi người hiện nay biết rằng anh hơn em 5 tuổi.

Bài 8: Hai hình chữ nhật có cùng chiều dài. Chiều rộng của chúng lần lượt tỉ lệ với 3 và 4. Tính diện tích của mỗi hình chữ nhật đó biết rằng hiệu diện tích của chúng là 7cm2.

Bài 9: Cho góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Vẽ 2 cung tròn tâm A và tâm B có bán kính bằng nhau sao cho chúng cắt nhau ở C.

a) Chứng minh:

b) Chứng minh: OC là tia phân giác của góc xOy.

Bài 10: Cho tam giác ABC, vẽ AH BC tại H. Trên nửa mặt phẳng bờ AC không chứa B vẽ tam giác ACD sao cho AD = BC; CD = AB. Chứng minh rằng:

a) AB // CD

b) AH AD.

Bài 11: Cho tam giác ABC có AB = AC. Gọi M là một điểm nằm trong tam giác sao cho MB = MC; N là trung điểm của cạnh BC. Chứng minh rằng:

a) AM là tia phân giác của góc BAC.

b) Ba điểm A, M, N thẳng hàng.

c) MN là đường trung trực của đoạn thẳng BC.

Bài 12: Cho tam giác ABC có AB = BC = AC. Gọi O là một điểm bất kỳ nằm trong tam giác sao cho OA = OB = OC. Chứng minh rằng O là giao điểm 3 tia phân giác của các góc A; B; C.

0