K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(2^{50}=\left(2^5\right)^{10}=32^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

Suy ra: 250 > 520

b)

\(9^{200}=\left(9^2\right)^{100}=81^{100}\)

Suy ra: 99100 > 81100

5 tháng 8 2018

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

Suy ra: 5202 < 2505

21 tháng 12 2021

\(2^{333}< 3^{222}\)

21 tháng 12 2021

mình cần cách giải

20 tháng 8 2019

Trả lời

4100=2200

2202

Vậy 2200 < 2202 hay 4100 < 2202

30 và 58

30 < 58

20 tháng 8 2019

a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)

\(\Rightarrow\text{ }4^{100}< 2^{202}\)

b, \(3^0=1< 5^8\)

\(3^0< 5^8\)

c, \(\left(0,6\right)^0=1\)

\(\left(-0,9\right)^6=\left(0,9\right)^6\)

\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)

d, 

e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)

\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)

Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)

24 tháng 6 2016

2 mũ 1000 > 12 mũ 1200

9 mũ 99 > 99 mũ 9

24 tháng 6 2016

a, 12^1200 > 2^100 Vì cả cơ số lẫn số mũ đều lớn hơn

b, 9^99= (9^11)^9

Vì 9^11> 99 nêm 99^11^9> 99^9

Vậy 9^99> 99^9

    

23 tháng 6 2016

a,312 và 58

Ta có:312=(33)4=274

58=(52)4=254

Vì 274>254 nên 312>58

b,(0,6)9 và (0,9)6

Ta có:(0,9)6>(0,6)6 mà (0,6)6>(0,6)9

\(\Rightarrow\)(0,6)9<(0,9)6

c,52000 và 101000

Ta có:52000=(52)1000=251000>101000

\(\Rightarrow\)52000>101000

d,?????

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

12 tháng 8 2020

So sánh và trình bày cách làm luôn dùm mình