Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn các đa thức bằng cách nhân chúng với nhau rồi thay số vào là tính được mà
a) A = (x - 3)(x + 7) - (2x - 5)(x - 1)
= x(x + 7) - 3(x + 7) - 2x(x - 1) + 5(x - 1)
= x2 + 7x - 3x - 21 - 2x2 + 2x + 5x - 5
= (x2 - 2x2) + (7x - 3x + 2x + 5x) + (-21 - 5) = -x2 + 11x - 26 = -(x2 - 11x + 26)
+) Với x = 0 thì -(02 - 11.0 + 26) = -(0 - 0 + 26) = -26
+) Với x = 1 thì -(12 - 11.1 + 26) = -(1 - 11 + 26) = -16
b) B = (3x + 5)(2x - 1) + (4x - 1)(3x + 2)
= 3x(2x - 1) + 5(2x - 1) + 4x(3x + 2) - 1(3x + 2)
= 6x2 - 3x + 10x - 5 + 12x2 + 8x - 3x - 2
= (6x2 + 12x2) + (-3x + 10x + 8x - 3x)+ (-5 - 2) = 18x2 + 12x - 7
|x| = 2 => x = 2 hoặc x = -2
Với x = 2 thì 18.22 + 12.2 - 7 = 18.4 + 24 - 7 = 72 + 24 - 7 = 89
Với x = -2 thì 18.(-2)2 + 12.(-2) - 7 = 18.4 + (-24) - 7 = 18.4 - 24 - 7 = 41
c) C = (2x + y)(2z + y) + (x - y)(y - z)
= 2x(2z + y) + y(2z + y) + x(y - z) - y(y- z)
= 4xz + 2xy + 2zy + y2 + xy - xz - y2 + yz
= 4xz + 2xy + 2zy + (y2 - y2) +xy - xz + yz
= 4xz + 3xy + 3zy
Với x = 1,y = 1,z = 1
= 4.1.1 + 3.1.1 + 3.1.1 = 4 + 3 + 3 = 10
a, \(\left|x\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Thay x=2 vào A ta được :
A=(3.2+5)(2+7)-(2.2-5)(2-1)
=11.9+1.1=99+1=100
Vậy ..
Thay x=-2 vào A ta được :
A=(-2.3+5)(-2+7)-(-2.2-5)(-2-1)
=-1.5-(-9)(-3)
=-5+27=22
Vậy ...
b,\(\left|1\right|=z\)
\(\Rightarrow z=1\)
Thay x=1,y=2,z=1 vào B ta được :
B=(2.1+2)(2.1+2)+(1-2)(2-1)
=(2+2)(2+2)+(-1).1
=4.4-1 = 16-1=15
Vậy ....
a, \(\left|x^{ }\right|\)=2 \(\Rightarrow\)x=\(\pm2\)
TH 1: = (3.2+5)(2+7)- (2.2-5)(2-1)
=11 . 9+1
=99
TH2: =(3.-2)(-2+7)-(2.-2-5)(-2-1)
=-6.5+9.-3
=-30-27 = 57
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y
= - xy
= \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)
= \(\frac{1}{2}\)
mk đang bận mấy câu kia tương tự nha
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
Bài 1 :
a, \(\left(2x^2-3x-1\right)\left(5x+2\right)=10x^3+4x^2-15x^2-6x-5x-2\)
\(=10x^3-11x^2-11x-2\)
b, sửa đề : \(\left(-x^2+2x-3\right)\left(4x^2-2x+3\right)\)
\(=-4x^4+2x^3-3x^2+8x^3-4x^2+6x-12x^2+6x-9\)
\(=-4x^4+10x^3-19x^2+12x-9\)
Bài 2 :
\(B=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)
Thay x = 1 ; y = 1 ; z = -1 vào biểu thức trên ta được
\(B=\left(1+1\right)\left(-2+1\right)+\left(1-1\right)\left(y-z\right)=2.\left(-1\right)=-2\)
Trả lời:
Bài 1:
a, ( 2x2 - 3x - 1 ) ( 5x + 2 )
= 10x3 + 4x2 - 15x2 - 6x - 5x - 2
= 10x3 - 11x2 - 11x - 2
b, ( - x2 + 2x - 3 ) ( 4x2 - 2 + 3 )
= - 4x4 - 2x2 + 3x2 + 8x3 - 4x + 6x - 12x2 + 6 - 9
= - 4x4 + 8x3 - 11x2 + 2x - 3
Bài 2:
B = ( 2x + y ) ( 2z + y ) + ( x - y ) ( y - z )
Thay x = 1, y = 1, z = - 1 vào B, ta được:
B = ( 2.1 + 1 ) [ 2.( - 1 ) + 1 ] + ( 1 - 1 ) [ 1 - ( - 1 )
= ( 2 + 1 ) ( - 2 + 1 ) + 0 . ( 1 + 1 )
= 3 . ( - 1 ) + 0
= - 3