K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Đặt \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)

\(A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{18-16}{16.18}\)

\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)

\(A=\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{18}\right)\)

\(A=\frac{4}{2}.\frac{4}{9}\)

\(\Rightarrow A=\frac{8}{9}\)

25 tháng 6 2017

\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{16.18}\)

\(=\frac{4}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{16}-\frac{1}{18}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{18}\right)\)

\(=2.\frac{4}{9}\)

\(=\frac{8}{9}\)

I.\(B=9,8+8,7+7,6+...+2,1-1,2-2,3-3,4-...-8,9\)

\(B=\left(9,8-8,9\right)+\left(8,7-7,8\right)+\left(7,6-6,7\right)+...+\left(2,1-1,2\right)\)

\(B=0,9+0,9+0,9+...+0,9\) ( 8 số 0,9 )

\(B=7,2\)

II.

\(\left(a\right)\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{19\cdot20}\)

\(=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2\left(1-\frac{1}{20}\right)\)

\(=2\cdot\frac{19}{20}=\frac{19}{10}\)

\(\left(b\right)\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{17\cdot19}+\frac{4}{19\cdot21}\)

\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\)

\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)

\(=2\left(1-\frac{1}{21}\right)\)

\(=2\cdot\frac{20}{21}=\frac{40}{21}\)

\(\left(c\right)\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{16\cdot18}+\frac{4}{18\cdot20}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

6 tháng 8 2020

cảm ơn  bạn

27 tháng 5 2016

1/ 2.4 + 1/4.6 + ...+1/18.20

= 1/2 - 1/4 + 1/4 -1/6 + .... + 1/18.20

trừ hết đi cho nhau cuối cùng:

= 1/2 - 1/20 = 9/20

28 tháng 7 2019

a) \(A=2.4+4.6+...+98.100\)

\(\Rightarrow6A=2.4.6+4.6.6+....+98.100.6\)

\(=2.4.6+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\)

\(=2.4.6+4.6.8-2.4.6+...+98.100.102-98.98.100\)

\(=98.100.102\)

\(=999600\)

\(\Rightarrow A=\frac{999600}{6}=166600\)

PHẦN khác tương tự mẹo là xem tích đầu tiên rồi nhân cả biểu thức đó với số liền sau của tích các số đầu nhưng mà có quy luật

17 tháng 8 2016

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2004.2006}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2004}-\frac{1}{2006}\)

\(=\frac{1}{2}-\frac{1}{2006}\)

\(=\frac{1003}{2006}-\frac{1}{2006}\)

\(=\frac{1002}{2006}\)

\(=\frac{501}{1003}\)